Thèse soutenue

Structuration d’électrode contrôlée pour des applications (bio)électrochimiques

FR  |  
EN
Auteur / Autrice : Jennifer Lenz
Direction : Alexander KuhnRolf Hempelmann
Type : Thèse de doctorat
Discipline(s) : Chimie-physique
Date : Soutenance le 30/09/2011
Etablissement(s) : Bordeaux 1 en cotutelle avec Universität des Saarlandes
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut des Sciences Moléculaires (Bordeaux)
Jury : Président / Présidente : Gregor Jung
Examinateurs / Examinatrices : Alain Walcarius, Philippe Bopp, Gert-Wielan Kohring
Rapporteurs / Rapporteuses : Jean-Pierre Pereira-Ramos, Derck Schlettwein

Résumé

FR  |  
EN

Ce mémoire a été préparé dans le cadre du projet européen ERUDESP. Il décrit en détail les études qui ont été réalisées dans ce travail. Un bioréacteur sous forme d’une cellule bioélectrochimique à flux a été développé dans le but de servir pour la bioélectrosynthèse enantiopure. Le mémoire est consacré au design de cellules, screenings de différents médiateurs, au test de différentes réactions électroorganiques et électroenzymatiques à la fois dans une cellule électrochimique classique et dans une cellule électrochimique à flux. Un thème central de ce mémoire représente la synthèse d’électrodes macroporeuses tri-dimensionnelles. Grâce à cela, la surface active de l’électrode est augmentée de manière significative. Pour la préparation de ces électrodes une approche de template a été suivie. Des particules de polystyrène monodisperses ont été synthétisées de différentes manières et sont utilisées pour la synthèse des cristaux colloïdaux qui constituent les templates. Comme procédure de préparation contrôlée de ces templates, la technique de Langmuir-Blodgett et la méthode d’évaporation contrôlée, suivi par l’électrodéposition des métaux et des oxydes métalliques sont appliquées. Les diamètres des pores des matériaux macroporeux résultants sont parfaitement contrôlables par le diamètre des particules utilisées. La méthode de Langmuir-Blodgett a été étendue et appliquée pour la première fois à l’utilisation de particules de polystyrène. Le dépôt est réalisé dans les interstices des cristaux colloïdaux préparés préalablement, suivi par la dissolution des particules. De plus, des électrodes poreuses avec une grande surface de 6 x 6 cm2 ont été préparées. Les matériaux obtenus montrent une très bonne interconnéctivité avec une porosité ouverte et une surface active fortement augmentée ce qui se traduit électrochimiquement en une augmentation significative de la puissance du signal. Les matériaux poreux représentent un bénéfice non-seulement pour la (bio)électrosynthèse mais aussi dans le cadre de la (bio)électroanalyse. Dans ce mémoire, d’électrodes poreuses d’oxyde de ruthénium pour l’oxydation direct de NADH avec une surtension significativement améliorée ont été élaborée. La méthode de l’agrandissement de la surface est également appliquée et une meilleure densité de courant a été obtenue. Basé sur le projet ERUDESP, les méthodes apprises pour créer des électrodes poreuses à base de cristaux colloïdales ont dans la suite aussi été appliquées à d’autres domaines d’investigation. L’évolution méthodique de la technique de Langmuir-Blodgett a été utilisée pour le développement d’un système d’électrode renouvelable. Dans ce système, la surface peut être renouvelée sur commande par application d’un potentiel fixe (effet click).Les électrodes de l’oxyde de ruthénium ont non seulement été étudié dans le cadre du projet ERUDESP, mais la miniaturisation de ce matériau poreux et stable sous forme de microélectrodes a permis d’étudier une application comme capteur pH chimiquement et mécaniquement stable avec un meilleur ratio signal sur bruit. Dans ce cas le bruit thermique est diminué grâce à la porosité de l’électrode. Grâce à la technicité acquise par rapport à la synthèse des microélectrodes poreuses, des microélectrodes implantables pour les prothèses de main ont été aussi modifiées avec une couche macroporeuse pour augmenter la surface active et diminuer l’impédance de transition.Nous avons également exploré des couches multicatalyseurs macroporeuses de platine et nickel pour effectuer la génération d’hydrogène in-situ et l’hydrogénation simultanée dans un seul système catalytique.Comme dernière possibilité pour une structuration de surface contrôlée, des îlots de platine d’une étendue nanométrique furent examinées et biofonctionnalisées, ce qui résulte également en une augmentation significatif de la densité de courant.