
Département de formation doctorale en informatique

École doctorale EDMI Bordeaux

No d’ordre : 4269

Vers la sécurisation des systèmes
d’informatique ubiquitaire par le design:

une approche langage

THÈSE

soutenue le 27/06/2011

pour l’obtention du

Doctorat de l’Université de Bordeaux

(spécialité informatique)

par

Henner Jakob

Jury

Président : Serge Chaumette, Professeur à l’Université Bordeaux 1

Rapporteurs : Matthias Hollick, Professeur à Technische Universität Darmstadt

Philippe Lalanda, Professeur à Grenoble University (UJF)

Examinateurs : Charles Consel, Professeur à l’ENSEIRB, Bordeaux

Nicolas Loriant, Research Associate à Imperial College, London

Laboratoire Bordelais de Recherche en Informatique — UMR 5800

V E R S L A S É C U R I S AT I O N D E S S Y S T È M E S
D ’ I N F O R M AT I Q U E U B I Q U I TA I R E PA R

L E D E S I G N : U N E A P P R O C H E L A N G A G E

—————————

towards securing pervasive computing

systems by design: a language approach

henner jakob

—————————

université de bordeaux

Dedicated to:
my parents, Barbara and Hans Jakob,

my longest and best friend, Marco Ebel,
and my (s)well of motivation, the Atlantic Ocean.

A C K N O W L E D G M E N T S

First of all, I thank my advisor Charles Consel for offering the
opportunity to write a thesis, his valuable comments and his
guidance during these three years.

I deeply thank my thesis committee, Philippe Lalanda and
Matthias Hollick who read my thesis and provided me with
feedback, Serge Chaumette who lead the jury of my thesis defense
as president, and Nicolas Loriant with whom I worked during
my thesis.

I am also very grateful to the members of the Phoenix research
group, for their welcoming attitude and support. I thank Damien
for many many responses, long discussions, and an excellent
taste concerning music; Nicolas for working together on cross-
cutting concerns, weekly croissants, and the famous saviez-vous,
which boosted my French; Julien B. for valuable feedback and
special techniques in table-soccer; Pengfei for discussions about
security and teaching me some Chinese; Hongyu for encourag-
ing words during the final phase and always offering feedback
on my writings; Stéphanie for explaining me difficult nuances
and expressions of the French language; Quentin for technical
discussions and always being friendly; the engineers Benjamin
and Ghislain, who helped me understand the depths of Dia-
Suite, thus making it possible to integrate my work; Emilie for
providing feedback and comments from another angle, and pro-
moting geeky b-movies; Julien M. for his friendly attitude and
never saying no when I needed some help; Zoé for useful feed-
back, motivating words, and the many jokes that increased my
French vocabulary and understandings; Julien A. (non Phoenix)
for discussions in German, many non-work activities and being
a friend.

Beside the support at work, there are some more people I
would like to thank. It is more or less in a chronological order.
It is a long list, but through these three years, time and distance
made it difficult to maintain all friendships as I would like to
have done it.

I thank Verena, Diana and Petra for motivating me to work in
a foreign country. Without you, I would not have left Germany. I
thank my old colleagues at KOM who assured me in my ability
of writing a thesis, especially Nick, Tronje, Stefan and Matthias.
I thank Union Saint Bruno and the whole water polo section.
Sport was my balance and it was a pleasure doing sports on
national level with you guys. Special thanks to Xavier, Fabien,
Zézé and Guillaume, who integrated me socially in Bordeaux.

v

Many thanks also to the triathlon section of the Girondins, for
your motivation and exceptional team spirit.

I thank all my friends from Germany. Special thanks go to
my girlfriend Hanna for extreme telephone support and many
visits. Special thanks also to Marco, my best friend. I thank all
that came by to visit me, Malte, Felix, Falco, Katrin. The surf
crew, Balazs, Maria, Christian, Jason, Verena (again), Lion and
Sabrina. Not forgotten are those, who always welcomed me back
in Germany, like I never parted, Martin, Olga, Julius, Anna, Anni,
Sascha, Jürgen.

Last but not least, I thank my family. My parents Barbara and
Hans who supported my decisions through all my studies and
my brother Bastian for encouraging words, his excellent cooking,
and long board advices.

vi

R É S U M É

Dans de multiples domaines, un nombre grandissant d’applications
interagissant avec des entités communicantes apparaissent dans
l’environnement pour faciliter les activités quotidiennes (domo-
tique et télémédecine). Leur impact sur la vie de tous les jours des
utilisateurs rend ces applications critiques: leur défaillance peut
mettre en danger des personnes et leurs biens. Bien que l’impact
de ces défaillances puisse être majeur, la sécurité est souvent
considérée comme un problème secondaire dans le processus de
développement et est traitée par des approches ad hoc.

Cette thèse propose d’intégrer des aspects de sécurité dans
le cycle de développement des systèmes d’informatique ubiq-
uitaire. La sécurité est spécifiée à la conception grâce à des
déclarations dédiées et de haut niveau. Ces déclarations sont util-
isées pour générer un support de programmation afin de faciliter
l’implémentation des mécanismes de sécurité, tout en séparant
ces aspects de sécurité de la logique applicative. Notre approche
se concentre sur le contrôle d’accès aux entités et la protection
de la vie privée. Notre travail a été implémenté et fait levier sur
une suite outillée existante couvrant le cycle de développement
logiciel.

A B S T R A C T

A growing number of environments is being populated with a
range of networked devices. Applications leverage these devices
to support everyday activities in a variety of areas (e.g., home
automation and patient monitoring). As these devices and ap-
plications get woven into our everyday activities, they become
critical: their failure can put people and assets at risk. Failures
can be caused by malicious attacks and misbehaving applications.
Although the impact of such situations can be major, security con-
cerns are often considered a secondary issue in the development
process, and treated with ad hoc approaches.

This thesis proposes to address security concerns throughout
the development lifecycle of a pervasive computing system. Se-
curity is addressed at design time thanks to dedicated, high-level
declarations. These declarations are processed to implement secu-
rity mechanisms, and to generate programming support to ease
the development of the security logic, while keeping it separate
from the application logic. Our approach is studied in the context
of access control and privacy concerns. Our work has been imple-

vii

mented and leverages an existing software-design language and
a suite of tools that covers the software development lifecycle.

viii

R É S U M É É T E N D U

Les progrès des technologies de télécommunication et la pro-
lifération des entités communicantes permettent une intégration
transparente des systèmes informatiques dans notre vie quotidi-
enne. Aujourd’hui, comme l’avait prévu Weiser [88], les systèmes
d’informatique ubiquitaire sont déployés dans de nombreux do-
maines tels que la domotique et l’assistance à la personne.

L’émergence de l’informatique ubiquitaire combinant des élé-
ments de différents domaines informatiques (systèmes distribués,
informatique mobile, etc.) fait apparaitre de nombreux défis
à aborder. Prenons l’exemple d’une maison intelligente afin
d’illustrer ces défis. Typiquement, une maison intelligente se
compose de plusieurs applications d’informatique ubiquitaire.
Ces applications reçoivent des données provenant de différents
capteurs, prennent des décisions à partir de ces données collec-
tées et agissent sur des actuateurs en fonction des décisions prises.
Par exemple, des capteurs de mouvement et de température sont
utilisés pour automatiser l’éclairage et réguler le chauffage.

Le développement d’applications d’informatique ubiquitaire
demande de répondre à de nombreuses difficultés techniques
telles que l’hétérogénéité des entités communicantes et des pro-
tocoles de communication utilisés, la découverte de services et
d’entités, ou encore l’orchestration de ces entités afin qu’elles
aident les utilisateurs dans leurs activités quotidiennes.

L’informatique ubiquitaire implique que l’utilisateur soit en-
touré d’entités communicantes, et que celles-ci deviennent partie
intégrante de sa vie quotidienne. Ainsi, l’informatique ubiqui-
taire inclut des applications critiques telles qu’un système anti-
incendie. Une défaillance de ce type de système peut donc
impacter de manière très critique les utilisateurs et leurs biens.

A ce stade, les propriétés non fonctionnelles1 (PNF) d’un sys-
tème doivent être considérées pour assurer sa fiabilité. Taylor
et al. [85] définissent une PNF d’un logiciel en tant que “con-
trainte sur la manière dont le système implémente et délivre ses
fonctionnalités”.

La sécurité est une PNF primordiale et propose de nombreux
défis. La sécurité et les PNF2 en général offrent de nombreuses
possibilités de recherche et demandent bien plus qu’une seule
thèse. En conséquence, nous limitons le champ de cette thèse à
deux aspects de sécurité particulièrement intéressants pour les

1 Dans la littérature, ces propriétés sont également appelées qualités d’un sys-
tème [3]

2 D’autres exemples de PNF sont la fiabilité, la tolérance aux fautes, la perfor-
mance, etc.

ix

systèmes d’informatique ubiquitaire: le contrôle d’accès et le respect
de la vie privée [10].

Comme il a été mentionné précédemment, les maisons intel-
ligentes sont des systèmes critiques et ont donc besoin d’une
protection convenable.

Le contrôle d’accès garantit que seules les personnes et les
applications autorisées peuvent interagir avec les services et
ressources de la maison (par exemple, empêcher des person-
nes malveillantes de contrôler la maison à distance ou d’ assurer
un partage fiable des ressources entre les applications). Pour
aider l’homme dans ses activités de tous les jours, la maison
intelligente collecte de nombreuses données. Le respect de la
vie privée contraint à se soucier de la fuite de données sensibles
vers le monde extérieur, (par exemple, un cambrioleur pourrait
pirater et utiliser les caméras vidéo transmettant des images à
travers le Wifi sans protection). De toute évidence, ce type de
système doit garantir que de telles situations ne peuvent pas se
produire.

En général la sécurité impacte tous les aspects d’un système
domotique, à la fois les applications déployées et le cœur du
système lui même. L’intégration des mécanismes de sécurité de
manière ad hoc mène à du code imbriqué à plusieurs endroits, ce
qui rend la maintenance et l’évolution du système pratiquement
impossible. Ceci est d’ailleurs vrai pour toutes les PNF. Afin de
résoudre ce problème, Bass et al. [3] propose de les considérer
à toutes les étapes du cycle de développement d’un système
logiciel: depuis la conception jusqu’au déploiement en passant
par l’implémentation.

Cependant, les approches existantes se concentrent sur le sup-
port de développement d’environnements intelligents, ou bien
adoptent une approche plus formelle en examinant et adap-
tant des modèles de sécurité pour répondre aux différents dé-
fis de l’informatique ubiquitaire. Aucun support n’est fourni
au développeur pour intégrer la sécurité systématiquement au
cours du processus de développement. Puisque la sécurité et les
autres PNF sont toujours en concurrence avec (et perdent souvent
contre) les exigences fonctionnelles et de temps de mise sur le
marché [85], aider et faciliter le travail des développeurs dans ces
domaines est crucial pour construire des systèmes sûrs et fiables.

approche

La première partie de cette thèse présente un modèle de con-
trôle d’accès qui cible un problème particulier des systèmes
d’informatique ubiquitaire: l’utilisation conflictuelle de ressources.
Notre approche couvre le cycle de développement logiciel et
permet notamment d’enrichir la description d’un système in-

x

formatique ubiquitaire avec des déclarations sur le partage des
ressources. Ces déclarations sont utilisées pour automatiser la
détection des conflits, gérer les états d’un système d’informatique
ubiquitaire et orchestrer, à l’exécution, les accès aux ressources.

La deuxième partie présente notre approche sur l’intégration
des PNF dans un système d’informatique ubiquitaire. Nous
illustrons cette approche au travers de deux aspects de la sécu-
rité informatique qui visent à améliorer la protection de la vie
privée. Pour ce faire, nous utilisons la programmation orientée
aspect (POA [44]), une technique éprouvée de modularisation des
PNF. Afin de s’abstraire des détails de bas-niveau d’un système
d’informatique ubiquitaire, nous présentons un langage orienté
aspect s’appuyant sur leur description conceptuelle, permettant
ainsi un tissage fin des aspects.

Les deux parties de cette thèse s’appuient sur DiaSuite3, une
suite d’outils fournissant un environnement de développement
dédié aux systèmes informatiques ubiquitaire. DiaSuite repose
sur un langage de conception dédié: DiaSpec. A partir de la
spécification DiaSpec d’une application, un environnement de
développement est généré comprenant une aide à l’implémentation,
une série de tests, et un outil de déploiement. Nous proposons
d’enrichir ces spécifications avec des configurations de déploiement
cohérentes et de tisser des aspects lors de l’implémentation.

En effet, notre approche repose sur la séparation de la logique
applicative et des aspects non fonctionnels. Nous avons mis
en place et validé cette approche sur diverses applications de
domotique.

contributions

Ce travail met en œuvre et détaille une approche d’intégration
d’aspects de sécurité dans les systèmes d’informatique ubiqui-
taire. Les contributions apportées par cette thèse sont les suiv-
antes.

• Extension du cycle de développement – Nous avons identifié
les exigences sur les différentes étapes du développement
logiciel afin de détecter, résoudre et prévenir les conflits.
Nous avons intégré des activités de gestion des conflits
dans le cycle de développement logiciel.

• Déclarations de gestion des conflits – Nous avons étendu un
langage de conception spécifique au domaine de la do-
motique pour la résolution des conflits. Une approche
déclarative est introduite pour définir les états d’un système

3 DiaSuite est une suite d’outils open source librement disponible à l’adresse
suivant : http://diasuite.inria.fr/.

xi

http://diasuite.inria.fr/

d’informatique ubiquitaire et leur criticité. Ces déclarations
constituent la base pour définir la logique de gestion des
conflits.

• Support de programmation – Les déclarations dédiées à la
gestion des conflits au niveau de la conception du logiciel
sont utilisées pour enrichir le canevas de programmation
avec la génération de code dédié à la gestion des conflits.
Ce code (1) guide la mise en œuvre de la logique de gestion
des conflits intra et inter-applications, et (2) gère les accès
aux ressources à l’exécution pour empêcher les conflits.

• Un langage orienté aspects – Le langage développé, DiaAspect,
permet l’expression des fonctionnalités transversales au
niveau de la conception. Pour ce faire, le langage fournit
un modèle des points de jonction pour manipuler les mo-
tifs de conception de DiaSpec. Les aspects déclarés sont
automatiquement tissés dans le canevas de programmation
généré.

• Extensions vers un système domotique sécurisé – Nous avons
validé DiaAspect en l’utilisant pour implémenter, d’une
part, une communication cryptée entre des composants
et, d’autre part, un contrôle d’accès dans un système do-
motique. Ces deux mécanismes sont nécessaires pour la
protection de la vie privée: les données échangées sont
protégées par cryptage, tandis que les accès aux données
sont supervisés.

plan de la thèse

Cette thèse est divisée en quatre parties. La première partie
présente le contexte et le problème, la deuxième partie décrit
notre approche qui vise le contrôle d’accès, la troisième partie
présente notre approche qui traite de la protection de la vie privée,
et la quatrième partie conclue par les résultats et travaux futurs.

Contexte

La première partie présente le contexte et les travaux existants.
Le chapitre 2 définit la terminologie de base et introduit le do-
maine de la domotique, avec ses motivations et ses enjeux, partic-
ulièrement au regard des problèmes de sécurité. Ensuite, nous
détaillons les approches existantes et leurs limites au niveau des
aspects fonctionnels et non fonctionnels. Le chapitre 3 donne un
aperçu de notre approche et définit des hypothèses qui cadrent
la portée de cette thèse. Le chapitre 4 présente notre langage de

xii

conception sur lequel notre approche est basée, et introduit des
exemples illustratifs qui sont utilisés tout au long de ce travail.

Contrôle d’accès

La deuxième partie décrit notre approche d’intégration d’un
modèle de contrôle d’accès dans les maisons intelligentes. Le
chapitre 5 présente une approche dédiée à la gestion des con-
flits de ressources. Pour ce faire, DiaSpec et le processus de
développement sont étendus afin d’assurer une intégration au
plus tôt et de configurer le mécanisme au niveau de la concep-
tion. Le chapitre 6 évalue notre approche et présente les travaux
existants dans ce domaine.

Vie privée

La troisième partie présente une approche de Programmation
Orientée Aspect (POA) qui est suffisamment expressive pour
intégrer des propriétés de sécurité dans le système. Le chapitre 7

commence par une introduction du POA. Ensuite, nous donnons
les détails de notre approche et nous démontrons son apport en
mettant en œuvre des solutions concrètes sur deux problèmes
de sécurité: la distribution de certificats entre des composants et
la mise en place de listes de contrôle d’accès dans un système
domotique. Le chapitre 8 évalue cette approche et présente les
travaux existants dans ce domaine.

Résultats

La quatrième partie résume les résultats de la thèse. Le chapitre 9

conclue sur les travaux réalisés dans le cadre de la thèse et le
chapitre 10 présente des problèmes restants et des pistes de
travaux futurs.

xiii

L I S T E D E S P U B L I C AT I O N S

Les travaux discutés dans cette thèse ont fait l’objet de publica-
tions internationales dans la domaine de l’informatique ubiqui-
taire.

• Architecturing Conflict Handling of Pervasive Computing
Resources, in Proceedings of the 11th IFIP International Con-
ference on Distributed Applications and Interoperable Systems
(DAIS’11), Reykjavik, Iceland, June 6-9, 2011, 92-105. Hen-
ner Jakob, Charles Consel et Nicolas Loriant

• An Aspect-Oriented Approach to Securing Distributed Sys-
tems, in Proceedings of the 6th International Conference on
Pervasive Services (ICPS’09),London, United Kingdom, July
13-17, 2009, 21-30, Henner Jakob, Nicolas Loriant et Charles
Consel

xv

C O N T E N T S

1 introduction 1

1.1 Approach 2

1.2 Thesis Contributions 3

1.3 Roadmap 4

i context 7

2 background 9

2.1 Home Automation Systems 9

2.2 Challenges in Home Automation Systems 12

2.3 Domain-specific Security Requirements 14

2.4 Developing Functional Requirements 16

2.5 Security Concerns in Application Development 22

2.6 Summary 24

3 problem statement 27

4 diaspec 29

4.1 The Sense-Compute-Control (SCC) Pattern 29

4.2 Describing the Environment 31

4.3 Designing the Application 33

4.4 Implementing the Application 34

4.5 Summary 38

ii access control 39

5 resource conflict handling 41

5.1 Delimiting Resource Conflicts 43

5.2 Conflict Management 45

5.3 Implementation 50

5.4 Summary 55

6 evaluation 57

iii privacy 61

7 integration of security mechanisms 63

7.1 Background 63

7.2 Improving Privacy 66

7.3 The DiaAspect Language 69

7.4 Implementation 77

7.5 Summary 80

8 evaluation 81

iv results 85

9 conclusion 87

10 future work 89

bibliography 91

xvii

xviii contents

v appendices 101

a diaspec code samples 103

b java code samples 107

L I S T O F F I G U R E S

Figure 1 A smart home and its resources 11

Figure 2 Security goals in a smart home 14

Figure 3 Basic concept of middleware 18

Figure 4 Communication via middleware 18

Figure 5 DiaSpec design pattern 30

Figure 6 DiaSpec development cycle 30

Figure 7 Design of the intrusion module 34

Figure 8 DiaSpec/DiaGen generated code structure. 35

Figure 9 Architecture of the emergency application 44

Figure 10 Potential resource conflicts between multi-
ple controller components 45

Figure 11 Extended DiaSpec runtime system 52

Figure 12 The generated policies in the system 53

Figure 13 The decision process for an access request 54

Figure 14 Possible interactions between DiaSpec com-
ponents 64

Figure 15 Distribution and verification of certificates 67

Figure 16 Enforcement of Access Control Lists 68

Figure 17 DiaAspect Join Point Model 70

Figure 18 Security crosscuts the DiaSpec code struc-
ture 78

L I S T I N G S

Listing 1 Taxonomy of the emergency application 32

Listing 2 Design of the intrusion module 33

Listing 3 The Java interface for the Track action 36

Listing 4 Implementation of the IntrusionCtrl com-
ponent 37

Listing 5 Conflict-sensitive devices in the taxonomy 47

Listing 6 System and application state-components
declarations 48

Listing 7 An implementation of the FireASt state
component 49

Listing 8 Policies for the emergency application 55

xix

xx Listings

Listing 9 Partial DiaAspect BNF 72

Listing 10 DiaAspect code managing certificates 76

Listing 11 DiaAspect code enforcing ACLs 77

Listing 12 Generated AspectJ code to enforce ACLs 80

Listing 13 Taxonomy of the emergency application 103

Listing 14 The emergency application 104

Listing 15 The CertificateHelper class 107

1
I N T R O D U C T I O N

Security aspects of software systems should
be considered from a project’s start. During

system conception, the security requirements
should be identified and corresponding secu-

rity measures designed. Patching security
problems after a system is built can be pro-

hibitively expensive, if not technically infeasible.

— Taylor et al. [85]

The advances in telecommunication technologies and the pro-
liferation of embedded networked devices are allowing the seam-
less integration of computing systems in our everyday lives.
Nowadays, pervasive computing systems, as envisioned by
Weiser [88], are being deployed in an increasing number of areas,
including building automation and assisted living.

With this new paradigm of pervasive computing, which com-
bines elements from different computer science domains (e.g., dis-
tributed systems, mobile computing), comes a number of chal-
lenges that have to be addressed [74]. To illustrate these, let
us take the example of a smart home. Typically, a smart home
consists of multiple applications that gather data from sensor
devices, compute decisions from the data collected, and carry out
these decisions by orchestrating actuating devices. For example,
motion and temperature sensors are used to automate lighting
and regulate heating.

Functional challenges for application development include the
heterogeneity of the deployed devices, the different communi-
cation protocols they use, service and device discovery, and the
orchestration of the devices such that they support the users in
their daily activities.

Pervasive computing implies that technical devices are ev-
erywhere, surrounding the user, becoming a part of the user’s
everyday life [88]. As a result, pervasive computing includes
critical areas such as people evacuation in case of fire. Thus a
failure of the home automation system can have critical effects
on the physical world, putting people and assets at risk.

1

2 introduction

At this point, the non-functional properties1 (NFP) of a system
have to be addressed to make it dependable. Taylor et al. [85]
define an NFP of a software system as “a constraint on the manner
in which the system implements and delivers its functionality”.

Security is an NFP of great, and growing importance that opens
up a range of challenges. Security, and NFPs2in general, provide
many opportunities for research and require more than a single
thesis. Therefore, we narrow the scope of this thesis and focus on
two aspects from the security domain that are of special interest
for home automation systems: access control and privacy [10].

As previously mentioned, smart homes are critical systems,
and therefore require proper protection. Access control ensures
that only authorized people and applications can access and
use services and resources in the smart home (e.g., preventing
malicious persons from remotely controlling a smart home, and
enforcing safe resource sharing between applications). Privacy
addresses the problem of leaking sensitive data to the outside
world (e.g., a burglar could take advantage of wireless cameras
transmitting video streams in clear). Obviously, home automation
systems require guarantees that situations like this cannot occur.

Security concerns typically impact every aspect of a home au-
tomation system, that is, both the deployed applications and the
core system itself. Integrating security in an ad hoc manner leads
to entangled code at several places, making maintenance and
upgrading of the system virtually impossible. Since this is gen-
erally true for all NFPs, Bass et al. [3] propose to consider them
throughout the design, implementation, and deployment phases
of software systems. But, existing approaches either concentrate
on developing smart environments by providing programming
support for the functionality or take a more formal approach
that examines and adapts security models to address the various
challenges introduced by the pervasive computing domain. No
support is given to the developer to systematically integrate se-
curity concerns during the development process. Since security
and other NFPs always compete with (and often lose out to)
time-to-market and functional requirements [85], supporting and
facilitating the work for the developer in this area are critical
issues in building secure and reliable systems.

1.1 approach

The first part of this thesis presents an access control model that
targets a particular problem in pervasive computing systems: re-

1 In the literature they are also referred to as the qualities of a system [3]
2 Other examples for NFPs are reliability, fault-tolerance, efficiency, etc.

1.2 thesis contributions 3

source conflicts. This approach covers the software development
lifecycle and consists of enriching the description of a pervasive
computing system with declarations for resource sharing. These
declarations are used to automate conflict detection, manage the
states of a pervasive computing system, and orchestrate resource
accesses accordingly at runtime.

The second part presents our approach to integrating non-
functional properties into a pervasive computing system. We
illustrate this approach with two examples of security concerns
that improve privacy. To do so, we use aspect-oriented program-
ming (AOP [44]), a well-proven technique to properly modularize
non-functional concerns. To abstract over low level details of the
pervasive computing system, we provide an aspect-oriented lan-
guage that makes use of the design description of such systems,
enabling an accurate coordination of aspects.

Both parts of this thesis leverage DiaSuite3, a toolkit which
provides a development environment dedicated to pervasive
computing systems. The core of DiaSuite is a domain-specific
design language for pervasive computing systems named Dia-
Spec. A dedicated programming framework is generated from
a DiaSpec specification, which supports the implementation of
the functionality, the testing, and the deployment of applica-
tions. The existing specifications are reused by our approach to
generate coherent configurations, and for aspect weaving in the
implementation code.

In effect, our approach features the separation of non-functional
concerns from the application logic. We have implemented and
validated our approach on various building automation applica-
tions.

1.2 thesis contributions

This work implements and examines an approach to integrating
security concerns into pervasive computing systems. The specific
contributions of this thesis are described below.

• Extended development cycle – We have identified the require-
ments at different development stages to detect, resolve, and
prevent conflicts. We have seamlessly integrated conflict-
management activities into a software development lifecy-
cle.

• Conflict-handling declarations – We have extended a domain-
specific design language to declare conflict resolution at a
design level. A declarative approach is introduced to define

3 DiaSuite is freely available http://diasuite.inria.fr/ and open source.

http://diasuite.inria.fr/

4 introduction

the states of a pervasive computing system and their critical
nature. Such declarations form the basis used to define the
conflict-handling logic of a pervasive computing system.

• Programming support – Conflict-handling declarations are
used to augment the generated programming framework
with code dedicated to conflict handling. This code (1) guides
the implementation of the conflict-handling logic within
and across applications, and (2) generates code that man-
ages resource accesses to prevent runtime conflicts.

• An aspect-oriented language. – The language developed, Dia-
Aspect, allows the expression of crosscutting concerns at
design level. To do so, it provides a join point model to ma-
nipulate the design patterns used in DiaSpec. The declared
aspects are then automatically woven into a generated pro-
gramming framework.

• Extensions towards a secure home automation system – We val-
idated DiaAspect by securing the communication between
components and enforcing access control in a home automa-
tion system. Both mechanisms are required to improve the
privacy: exchanged data is protected by encryption, while
accesses to data are supervised.

1.3 roadmap

This thesis is split into four parts: The first part introduces the
context and the problem, the second part describes our approach
that targets access control, the third part presents our approach
that addresses privacy, and the fourth part concludes with the
results and outlines future work.

Context

The first part introduces the context and examines related work.
Chapter 2 defines basic terminology and introduces the domain
of home automation, with its motivations and challenges, specif-
ically security concerns. Afterwards we examine existing ap-
proaches and their limitations in relation to functional and non-
functional concerns. Chapter 3 gives an overview of our approach
and makes assumptions to limit the scope of this thesis. Chapter 4

introduces a design language dedicated to pervasive computing,
DiaSpec, which is the foundation of this work, and presents the
illustrating examples that appear throughout this work.

1.3 roadmap 5

Access Control

The second part describes our approach to integrating an access
control model into smart homes. Chapter 5 presents a dedicated
approach to using access control for resource conflict handling.
Therefore, DiaSpec and the coherent development process are
extended to ensure early integration and context-aware config-
uration of the mechanism at design level. An evaluation of the
approach and specific related work follow in Chapter 6.

Privacy

The third part presents an aspect-oriented approach to integrate
system-wide security properties. Chapter 7 starts with an intro-
duction to AOP, details our approach and shows its usefulness
by implementing concrete solutions on two widespread secu-
rity problems: the distribution of certificates over an encrypted
network and the enforcement of access control lists. Chapter 8

evaluates the approach and presents related work in this area.

Results

The fourth part summarizes the results. Chapter 9 draws overall
conclusions while Chapter 10 points out remaining problems and
outlines present avenues for future work.

Part I

C O N T E X T

2
B A C K G R O U N D

“smart homes” – domestic environments
in which we are surrounded by intercon-
nected technologies that are, more or less,
responsive to our presence and actions –

— Edwards and Grinter [24]

This chapter starts with an introduction of the home automa-
tion domain, which serves as the working example throughout
this thesis. We look into the reasons behind the design of smart
homes, which have been under development since the seventies,
and examine why they are not yet publicly available.

From a developer’s perspective, the main difficulties lie in
developing the functionalities of applications and securing home
automation systems. Afterwards, we present approaches that
address these problems and show their limitations.

2.1 home automation systems

The home automation domain applies pervasive computing tech-
nologies in living environments. This thesis uses scenarios and
examples from this domain to illustrate various challenges and
requirements, as well as the contributions of this work.

2.1.1 Terminology

We begin by introducing the terminology that is often used in the
context of home automation, that is, pervasive computing, ubiqui-
tous computing, and ambient intelligence.

Ubiquitous Computing and Pervasive Computing

Weiser [88] envisioned in the early nineties that “technology
would disappear by weaving itself into the fabric of everyday life
and finally become indistinguishable from it”. This ubiquitous
computing1 is based on two requirements: technology and inter-
action. On the technical side, the miniaturization of processors

1 Most definitions put pervasive computing on the same level with ubiquitous
computing. In this work both terms are used interchangeably.

9

10 background

and the evolution of telecommunication technologies (e.g., 3G2,
WLAN3) made it possible to deploy networked computing de-
vices everywhere: nowadays people carry around smartphones
that have more computing power than a personal computer from
the late nineties. On the interaction side Weiser et al. [90] believed
that the interaction with technology would move into the periph-
ery, with technology reading the signs and gestures of users and
doing many things automatically. In the case of direct interaction,
the necessary information must be moved into the center of the
user’s attention, and then back into the periphery, so that users
are not overwhelmed by the amount of information offered by a
ubiquitous computing system [89].

Ambient Intelligence

Ambient intelligence, a term mainly used in Europe, positions
itself more within the domain of human-computer interaction.
Shadbolt [76] sees ambient intelligence as a convergence of ubiq-
uitous computing, intelligent systems, and context awareness.
While the first provides networking capabilities, the second con-
centrates on new interfaces, such as speech recognition, gesture
classification and situation assessment, and the third focuses on
locating objects and object-environment interactions.

2.1.2 Smart Homes

Aldrich [1] defines a smart home as “a residence equipped with
computing and information technology, which anticipates and
responds to the needs of the occupants, working to promote their
comfort, convenience, security, and entertainment through the
management of technology within the home and connections to
the world beyond”.

Aldrich proposes five hierarchical classes for smart homes4:

1. Homes which contain intelligent devices – homes which con-
tain devices that function in an intelligent manner.

2. Homes which contain intelligent, communicating devices – homes
which contain devices that communicate with each other to
increase functionality.

3. Connected homes – homes which allow for interactive and
remote control of the system.

2 3rd Generation of standards concerning information and communication tech-
nologies provided by the International Telecommunication Union (ITU).

3 Wireless Local Area Network.
4 Since this is a hierarchical listing, a certain class includes all the functionalities

of the lower classes, so, for example, a smart home of class three, also provides
the functionality of class two and class one.

2.1 home automation systems 11

Figure 1: A smart home and its resources

4. Learning homes – homes which learn activity patterns, antic-
ipate users’ needs, and act on their behalf.

5. Attentive homes – homes which register the location and
activity of occupants and use this information to control
technology.

In this work we refer to smart homes of class five, thus all
the above-mentioned functionality is supported. Specifically,
this means that devices deployed in a living environment are
capable of communicating with each other. Sensors gather data of
various kinds that are processed and interpreted by applications.
According to this decision process, the applications use acting
devices to manipulate the environment to achieve their specified
goals (e.g., a Light application collects data from motion detectors
and light sensors, and uses blinds and lamps to manage the
lighting in the smart home).

Figure 1 shows a smart home and the various devices deployed
within it. The residential gateway is a central node in this environ-
ment. On one side, it is connected to all the deployed devices
within the smart home and provides software services, such as
an address book, for example. On the other side, it connects
the smart home with the internet, providing the possibility of
integrating web services into deployed applications (e.g., weather
forecasts), and remotely controlling the smart home. This central
role makes it an ideal candidate to host the runtime environ-
ment for applications. Chapter 4 introduces the approach of
the Phoenix research group to providing a runtime environment

12 background

on the residential gateway. Our goal is to provide a platform,
where the user can plug in new hardware and then download
and install applications to make use of the deployed devices5.

2.1.3 Motivation

The purposes of smart homes are varied. Some general goals
are comfort, convenience, security and entertainment [1]. With
the rising prices for electricity, gas, and oil, energy savings also
become an interesting factor. Another promising domain is aided
or assisted living. Here, the smart home aids elderly or chal-
lenged people through their daily activities, making them less
dependable on others [81]. This is also of major relevance in the
healthcare domain, where many new sensors that can be carried
around by patients are being developed. Applications in the
smart home could use the data from these sensors to call for help
in case of an emergency or remind the patient to take his or her
medication. Moore uses the term telehealth to describe “the full
array of technologies, networks and healthcare services provided
through telecommunication ” [51].

2.2 challenges in home automation systems

The idea of a smart home is nothing new. In the 1970s people
thought that by now we would live in apartments with several
automated tasks and would be able to do nearly everything with
a remote control. Even though the technology of today has all
the potential needed for a smart home, several challenges have
yet to be solved.

Edwards and Grinter [24] divide the various challenges that
have to be overcome to make smart homes available to the general
public into seven categories.

1. The “Accidentally” Smart Home
A smart home contains many different devices that com-
municate with each other. It is important that homeowners
understand their smart homes. That means, pervasive com-
puting has to provide insights into what these devices can
do, what they have done, and how they can be controlled.
For example, a stereo system that connects to multiple
speakers throughout the smart home using wireless tech-
nologies must not accidentally connect to the neighbours’
speakers.

5 We envision application stores for smart homes, like those currently available
for smartphones.

2.3 domain-specific security requirements 13

2. Impromptu Interoperability
Networked computing devices are the essence of the smart
home. Instead of tearing down their houses to build a new
smart home, homeowners will deploy new technologies
over time in their existing houses. This raises the question
of how the devices will interconnect and achieve a certain
goal together without planning this in advance.

3. No System Administrator
All the new technologies entering the home have to be
installed and configured in some way. Tasks that were per-
formed by specialists a few years back for large computer
systems will now need to be done by the end users, e.g.
installing and configuring new devices.

4. Designing for Domestic Use
Adding technology to the living environment will impact
the existing routines of occupants. Since it is impossible to
predict how people will use new technology, the design of
smart homes and applications is complicated.

5. Social Implications of Aware Home Technologies
New technologies do not only impact daily routines as
mentioned in the previous point, they also change these
routines. The social consequences that arise from these
changes are unforeseeable.

6. Reliability
When people buy equipment for their home, they expect
it to work, regardless of its complexity, e.g., microwaves,
televisions. In general, products that are used in homes
are thoroughly tested to prove their reliability, since there
are a number of regulations to be respected. Pervasive
computing makes prior testing difficult, because the system
is constructed in an ad hoc manner by plugging several
devices together.

7. Inference in the Presence of Ambiguity
Smart homes should learn from user habits and adapt au-
tomatically to support daily goals. Somehow the system
has to infer the necessary information. A crucial require-
ment is that the occupants understand how the system
infers information. Only with this knowledge can they then
understand why the system has failed in given situation6.

14 background

Figure 2: Security goals in a smart home

2.3 domain-specific security requirements

The security of a
system is defined
through security

policies that state
what is and is not

allowed [5, 6].

Security is an important and very broad domain in computer sci-
ence, and in information technologies (IT). Since more and more
business includes the transfer of digitalized data, the need for
protection rises [23, 82]. Still, most users ignore or are unaware
of the danger of unsecured IT devices such as smartphones or
computers. In the worst case (e.g., a hacked and virus-infested
computer), most users will simply turn it off and have the op-
erating system reinstalled. Home automation systems however,
surround the user with technology that directly affects him. Sim-
ply turning the system off can have severe consequences, such as
lack of emergency management during a fire, no HVAC7 during
winter, etc.

The problem is that most approaches concentrate on building
useful applications or improving functionality, and therefore ne-
glect security concerns [10]. Figure 2 shows two typical scenarios
that should be prevented: (1) a malicious attacker accessing de-
vices directly (i.e., cameras), or sniffing on unsecured exchanged
data (i.e., video stream), and (2) an application manipulating
devices it should not be able to access (i.e., an HVAC application
accessing the alarms). A worst case scenario would be a malicious
attacker taking over a residential gateway and thus, transforming
the smart home into a distributed surveillance system giving
away too much information about the occupants [47]. This sce-

6 In this case, failure means that the smart home did something that was not
expected by the occupants.

7 Heating, Ventilating, Air-Conditioning

2.3 domain-specific security requirements 15

nario is not that far-fetched: recently a car system8 was hacked
by scientists via Bluetooth, giving them complete control over the
car (e.g., dashboard, brakes, engine, etc.) [52]. It is evident that
security must not be taken lightly in these domains. “A security mech-

anism is an entity
or procedure that
enforces some part
of the security
policy.” Bishop [5]

Two security concerns are of particular interest to pervasive
computing: access control, because old models and mechanisms
do not address certain attributes of pervasive computing [10],
and privacy, which seems to be incompatible with the pervasive
computing paradigm [11].

2.3.1 Access control

Access Control has received much attention in the pervasive
computing domain, because approaches and mechanisms that
worked well in the past, such as Unix file system permissions, do
not address certain attributes of pervasive computing systems.
The most important challenge and difference is that a pervasive
computing environments combines the virtual and the physical
world [71, 72]. Thus, the permission to do something does not
only depend on the identity of the user, it also depends on
contextual information. For example, a ten year old child may
only have the right to use the cooker when an adult is present in
the kitchen. Additionally, pervasive computing systems require
physical entities to enforce access restrictions, e.g., cutting off
power to the cooker or locking the kitchen door.

Another problem that physical entities impose is safe resource
sharing. Pervasive computing implies the decoupling of services
and devices [66]. A door, for example, offers the services lock
and unlock. Decoupling these services from the door implies,
making them available to every application running in the system.
This enables resources to be used in new ways, for example, a
security application can use a keypad to let the user type in a
code to lock/unlock the doors, while an emergency application
automatically unlocks doors during emergency situations like
fires so as to ensure the evacuation of the occupants. The problem
lies in the fact that applications access resources without any
coordination between them. In this situation, it is very common
for a resource to be accessed by multiple applications, potentially
leading to conflicts. Resolving conflicts with simple strategies
like first in first out (FIFO) and time-sharing makes no sense in
this case, since this kind of strategy does not take the current
context into account: a FIFO strategy will therefore not prevent
the security application from locking doors during a fire, for

8 Car systems are quite similar to smart homes, as they use several deployed
sensors and actuators to support the driver.

16 background

example. Moreover, these strategies require the virtualization of
a resource which is not always possible for physical resources.

Since smart environments are multi-user systems, another im-
portant aspect is the collaboration between users to obtain certain
rights [86]. This aspect is not addressed in this thesis.

2.3.2 Privacy

Privacy is a key concern in our modern society. Nobody likes
the idea that personal data is available to everybody, everywhere.
Therefore, the Organization for Economic Cooperation and Devel-
opment (OECD) Privacy Guideline [53] and the European Union
Data Protection Directive 95/46/EC [26] give a more precise defi-
nition of privacy in the context of information technology. Both
specify that the collection of personal data should be limited and
that people must be aware of and have agreed to the collection of
such data.

Cas [11] shows the incompatibility of these privacy principles
with pervasive computing. While the privacy principles protect
the dissemination of data, pervasive computing tries to acquire
as much data as possible about people to provide services that
match their needs. This uncontrolled data collection through
sensors and devices of pervasive computing environments poses
a threat to privacy, especially if the data can be exploited by
malicious persons [10, 74].

To control the dissemination of personal data, and therefore
protect privacy, a number of mechanisms, mainly in relation
to confidentiality, integrity, and authentication, are applied [5, 23].
Confidentiality mechanisms are used to encrypt the data to make
it unreadable by third parties, integrity ensures the data cannot
be manipulated without detection, and authentication verifies
the identity of users or applications that access the data. Identity
management techniques like anonymization of user data and the
usage of pseudonyms are not addressed in this work [11, 23].

2.4 developing functional requirements

Application development must be supported throughout all
phases of the development process, which include design, imple-
mentation, testing, and deployment phases [85]. This support
must target the specific challenges of the pervasive computing
domain (Section 2.2).

Communication between devices is the essence of pervasive
computing and must be supported by the approach. More specif-

2.4 developing functional requirements 17

ically, it must cover the heterogeneity of the devices (e.g., different
platform9) and the combination of technologies that are used (e.g.,
Bluetooth, Ethernet), and must provide service/device discovery
to cope with the dynamic nature of the environment (i.e., devices
entering and leaving the environment) [13, 93].

To develop user-friendly and useful applications, the developer
needs support to implement the functionalities of applications.
In the home automation domain, the functionalities rely heavily
on the orchestration of various devices, on interpreting events,
and on remotely issuing commands. Adequate abstractions and
mechanisms for these central aspects are required.

To make smart homes a success, they must be able to easily
adapt to the different user preferences and requirements. De-
velopers need support to make their applications customizable,
flexible, and extensible. This requires easy parameterization and
configuration of applications, e.g., to test different interaction
mechanisms (e.g., tablet, gestures, voice), for example, or to add
new devices.

Without support in these areas, more time will be spent on
making applications work, rather than on creating useful applica-
tions.

In the following, we present existing approaches concerning
the support in developing the functionalities of applications.
Section 2.5.1 revisits the approaches with a focus on security
aspects.

2.4.1 Middleware

The general idea of middleware is to make services or application
components remotely available [4]. This feature is of particular
interest if an application uses several components (or other ap-
plications) that run on distant servers. To facilitate the creation
of such a distributed application, a middleware provides high
level primitives that abstract over the location and platform of
networked hosts that host the required components [25].

To do so, middleware, as the name suggests, sits between the
application components and the operating system. Figure 3

shows the middleware pattern. For the application compo-
nents, the middleware provides an application programming
interface (API), the previously mentioned high level primitives.
The platform interface connects the middleware to a specific
platform. Application components communicate with the mid-
dleware, and are unaware of the underlying platform and the

9 A platform consists of an operating system (OS) and a processor architecture,
e.g., Linux and Intel x86.

18 background

Middleware

API

Application #nApplication #1

...

...

Platform #1
 ·OS
 ·Hardware ·Hardware

 ·OS

Platform
InterfaceInterface

Platform #m

Platform

Figure 3: Basic concept of middleware

location of other components. Depending on the location of a
required application component, the middleware either forwards
a request to a local component, or uses the platform interface to
send it over the network (Figure 4).

C

Host #2

D

Host #1

B

Network

A

Figure 4: Transparent communication (local: A to B, distant: B to D)

Middlewares provide a basis from which to design home au-
tomation systems, in that they promote distribution. But they
do not cover everything. Indeed, middlewares were developed
to build fixed distributed systems, that is, systems in which ev-
erything is connected at the development stage. This limits their
ability to support the dynamic nature of pervasive computing
systems. Also, middlewares neglect the design phase of soft-
ware development and provide no support for functionalities and
evolution of applications.

2.4 developing functional requirements 19

2.4.2 Gaia/Olympus

Gaia is a middleware that was specifically developed for active
spaces by the research group led by Roy H. Campbell at the
University of Illinois at Urbana-Champaign [67]. Campbell et
al. define active spaces as physical spaces with clear boundaries
that contains physical objects, networked devices and users. Gaia
is seen as the operating system for an active space, in that it
abstracts the space and all the resources within it as a single
programmable entity. It uses the Common Object Request Broker
Architecture (CORBA [54]) to handle interactions between entities
in the active space.

To support user mobility, Gaia keeps track of the applications
a user is running, and the data he is using, in so-called sessions.
These sessions are dynamically mapped to the available resources
in an active space, for example when the user enters.

To cope with the typical problems of middlewares (e.g., static
setting, etc.), Ranganathan et al. [62] have developed a high level
programming model, Olympus, that builds upon Gaia. Olympus
has two main features:

• Semantic entity discovery – Developers specify space en-
tities (services, applications, devices, physical objects, lo-
cations, users) in an ontology. At runtime these abstract
entities are resolved to real entities taking the current con-
text, space policies, and user preferences into account. This
facilitates the portability of applications.

• High level space operations – Common operations (e.g., start,
stop, user moves) are included in the programming model.
As a result, developers can simply use these operations,
without worrying how they are actually performed in an
active space.

The limitations of Olympus are the lack of support during the
design phase and the fact that the space operations cannot be
extended.

2.4.3 Aura

While Gaia was centered on the active space, the Aura Project
led by David Garlan at Carnegie Mellon University proposes a
user centric approach [28, 80]. The idea is that each user has
a personal Aura that supports him in accomplishing his tasks
in a pervasive computing environment. To achieve this, Aura
interprets these tasks and maps them to services that are available
in the current environment. For example, the task “writing an

20 background

article” would be interpreted as editing text and then mapped to
Notepad10. During this mapping process, other information is
also taken into account, such as the quality of service, context
changes, mobility.

Treating user tasks as first class citizens facilitates the work
of the developer in designing user-centric applications, because
he does not have to consider which actual services will be used
at runtime. However, this automatic mapping is accomplished
through the introduction of certain constraints. Service suppliers
must conform to the uniform and proprietary Aura API. As a
result, services require a wrapper and an abstract service de-
scription: Notepad and Emacs are both described as text editors,
for example. Another limitation of Aura is the lack of support
in implementing services and context components. This makes
system upgrades costly.

2.4.4 Centaurus/Vigil

Finin et al. have developed Centaurus, an infrastructure and
communication protocol for providing services to heterogeneous
mobile clients in smart environments [38, 41]. Centaurus was
specifically designed for flexibility in communication to address
the properties of pervasive computing. Like middlewares, Cen-
taurus does not provide particular support for designing and
implementing applications. Vigil is based on the Centaurus in-
frastructure and has a strong focus on security [39, 40]. The fact
that Centaurus was built from scratch, has made it possible to
easily integrate a number of security services into Vigil. The
security features of Vigil are detailed in Section 2.5.1.

2.4.5 Ponder/Ponder2

The research group working with Morris Sloman at the Imperial
College at London has its roots in distributed systems manage-
ment. Their approach differs from those taken previously, in
that it focuses on describing the behavior of a distributed system
in the form of policies. Thus, they have developed the policy
language Ponder to describe authorization and obligation poli-
cies [18, 19]. Obligation policies specify actions that entities must
or must not do, while authorization policies specify actions that
entities can or cannot do.

Ponder2
11 is based on the original Ponder language, but has

been reimplemented and augmented with additional tools and

10 Or any other text editor that is available
11 http://ponder2.net

http://ponder2.net

2.4 developing functional requirements 21

functionality to improve its applicability in pervasive comput-
ing systems [49]. Resources such as sensors, devices, etc. are
wrapped by Managed Objects that are implemented in Java. The
Managed Objects create events, which are then interpreted by the
obligation policies, which can trigger actions on Managed Objects.
Authorization policies intercept action requests to enforce access
control on the Managed Objects.

The implementation of applications is done in two steps: (1) poli-
cies are specified in Ponder and Managed Objects are imple-
mented in Java, (2) the system is instantiated using a dedicated
language, PonderTalk, which provides the necessary parameters.
While this separation promotes reuse of existing components,
and facilitates the task of deploying the system with different
configurations, it offers no specific support for pervasive comput-
ing. Another limitation is the lack of support during the design
phase.

2.4.6 PervML

PervML is a model-driven development (MDD) approach for
context-aware pervasive computing systems that has been de-
veloped by the research group led by Vicente Pelechano at the
Technical University of Valencia [75]. Their approach covers the
entire development process, for which they have identified and
separated specific tasks and assigned them to different roles. For
each aspect of the application development, they propose an ade-
quate model. The developer designs various models on the basis
of which the application is fully generated in Java and OWL12,
and then deployed using OSGi13.

PervML provides support throughout the entire development
process. The downside of the MDD approach is that the developer
has to master several different technologies, as an application
requires: (1) a description in the form of a UML14 class diagram,
(2) pre and post conditions, and triggers to be expressed in OCL15,
(3) a graphical state transition diagram, (4) a UML interaction
diagram, (5) deployment information in the form of a location
model, and (6) optional non-functional properties in the form
of security policies that define the access rights of users in the
system. The extend to which such an MDD approach that avoids
general-purpose languages facilitates the work of the developer
is questionable [60].

12 Ontology Web Language, http://www.w3.org/2004/OWL/
13 Open Service Gateway initiative, http://www.osgi.org/
14 Unified Modeling Language, http://www.uml.org/
15 Object Constraint Language, http://www.omg.org/spec/OCL/2.2/

http://www.w3.org/2004/OWL/
http://www.osgi.org/
http://www.uml.org/
http://www.omg.org/spec/OCL/2.2/

22 background

2.5 security concerns in application development

One piece of advice concerning security is to be found again and
again in the software engineering literature: security has to be
considered from the very beginning of a project [3, 5, 82, 85].

This is particularly difficult in pervasive computing, because
a pervasive computing environment consists of many devices
and applications, and evolves constantly. Additionally, security
concerns typically impact all applications, as well as the core
system itself, at various places.

The last section presented existing approaches to developing
the functionalities of applications. The main idea was to provide
the developer with abstractions to hide low level details. Security
impacts the code at these low levels. To facilitate securing a sys-
tem, the approach has to support basic security mechanisms and
hide implementation details, just as middlewares hide communi-
cation. Preferably, the developer only configures the mechanism,
to avoid changes at the code level of the middleware or the ap-
plications. Another important aspect is that security requires
system-wide implementation and configuration. To be able to
easily adapt security aspects without impacting the functionality
of the application, the code that manages security should be
separate from the application logic.

Section 2.3 described the reasons behind the need for privacy
and access control for home automation systems. As a result,
mechanisms for access control, integrity, confidentiality, and au-
thentication should be supported16.

Concerning the design and implementation of security mecha-
nisms, Saltzer and Schroeder [70] presented eight principles that
are widely accepted in the security domain [5, 85]. These prin-
ciples are: economy of mechanism, fail-safe defaults, complete
mediation, open design, separation of privilege, least privilege,
least common mechanism, and psychological acceptability. We
provide more precise definitions when we justify our design and
implementation later in this work (Chapters 5, 7).

2.5.1 Practical approaches

Some middlewares provide support for security aspects. For
example, in the Enterprise Java Bean (EJB) component model [83],
EJB containers provide support for security through encryption
and authentication. Such component models are either dependent

16 As previously mentioned, privacy is mainly based upon integrity, confidential-
ity, and authentication.

2.5 security concerns in application development 23

on a specific middleware or provide little development support,
if any.

Concerning security, Gaia offers an authentication service
that separates the protocol (e.g., Kerberos17) from the mecha-
nism (e.g., retina scan) allowing easy extensions of both parts.
Additionally, Sampemane [71] developed an access control model
dedicated to smart spaces that takes the presence of multiple
users into account, and integrated it into Gaia. The access con-
trol mechanism requires a configuration in the form of security
policies. Gaia offers no support in creating coherent policies,
concerning the deployed applications and resources. As a result,
this task is error prone.

Vigil [39] is based on the Centaurus infrastructure and stands
out for its integration of security mechanisms. Specifically, it
adds a number of components to the system that provide security
services: a Certificate Authority issues certificates to new clients,
a Capability Manager responds to access control and delegation
requests, a Trust Agent keeps track of the currently delegated
rights and enforces security policies. The policies are specified
in Rei, a policy language dedicated to pervasive computing [42].
Rei provides constructs for expressing rights, prohibitions, obli-
gations, and dispensations. Rei also provides tools for policy
analysis and consistency checking, and supports meta policies
to define priorities between policies, so as to resolve conflicting
modalities, for example [57].

Ponder supports positive and negative obligation and autho-
rization policies by default, and enforces access control on entities.
Ponder, like Rei, provides policy analyses and consistency check-
ing. In [69] Russello et al. presented an approach to resolving
certain types of conflicts in Ponder policies. Recently, Sloman and
Lupu [79] introduced the Self-Managed Cell (SMC) as an architec-
tural pattern. An SMC features an optional security service that
provides authentication, confidentiality, and anomaly detection.

PervML provides little support for security: the developer
can define access rights for users on applications in the form of
security policies. In the case of Aura, security was not considerd.
Both approaches concentrate on the functionality of applications.

2.5.2 Formal approaches

Concerning access control, the approaches mainly focus on taking
additional information, also referred to as context, into account
to derive access rights (Section 2.3.1). Rashwand and Mišić [63]
have designed a framework for access control that takes context

17 http://web.mit.edu/kerberos/

http://web.mit.edu/kerberos/

24 background

information and user intent into account to meet the requirements
of pervasive computing. A similar work is presented by Kumar
et al. [46], who extended the well-known Role Based Access
Control (RBAC [73]) model to include context sensitivity.

Park and Sandhu [55], the designers of RBAC, go one step
further by defining a completely new model, which they call
the UCONABC usage control model18. They concentrate on the
“essence of usage control” represented by authorizations, obliga-
tions and conditions and provide a “fresh look at the fundamental
nature of access control itself”. Jin et al. [37] have extended this
model to introduce the delegation of rights, an important mecha-
nism for multi-user systems.

Specifically for the home automation domain, Gupta et al. [31]
present a criticality-aware access control model that proactively
adapts access rights when critical events occur, such as, for exam-
ple, allowing everybody to unlock the basement door to ensure
safe evacuation of the building during an earthquake.

To protect sensitive data, Hengartner and Steenkiste [34] pro-
pose an access control model for information that takes the re-
lation between information into account to derive access rights.
To do so, the relations between information are formally repre-
sented in the Standard Ontology for Ubiquitous and Pervasive
Applications (SOUPA [16]). In [35] they presented their access
control algorithm that prevents privacy violations that may be
caused by context-sensitive services (for example, the location of
a user can be revealed by his public calendar).

Privacy is difficult to achieve, since it depends on several mech-
anisms and contradicts the ubiquitous computing paradigm [11].
Langheinrich [47] proposes to integrate privacy into the design
of pervasive computing systems by using six design principles
– notice, choice and consent, proximity and locality, anonymity
and pseudonymity, security, and access and recourse. Langhein-
rich [48] opts for a privacy-aware system, which aims to achieve
a reasonable compromise between privacy and ubiquity. To
implement this privacy by design idea, the mechanisms that are
necessary for privacy have to be provided by the development
approach for home automation systems.

2.6 summary

This chapter presented requirements for developing applications
in the home automation domain, specifically concerning func-

18 UCON stands for usage control, while A represents authorizations, B obliga-
tions, and C conditions.

2.6 summary 25

tionalities and security aspects. To sum up, the core issues are as
follows:

1. Specific programming support is needed to facilitate de-
velopment of functional requirements. Without support,
developers have to spend a lot of time and effort on commu-
nication and orchestration issues, complicating evolution
and maintenance.

2. Security concerns must be dealt with from the beginning
of a project, that is to say from the design phase. Most
approaches neglect the design phase completely and only
concentrate on implementation. As a result, no high level
system information is available, making it necessary to
configure security mechanisms at low level.

3. Security mechanisms affect the code of applications and the
home automation system at multiple places. Developers
require support and guidance to implement and configure
security mechanisms efficiently and without interfering
with the functionalities19.

19 In the same way as with middlewares in relation to communication.

3
P R O B L E M S TAT E M E N T

At the end of the previous chapter we defined three main issues
that have to be addressed: development support for function-
alities, early integration of security concerns, and support in
implementing security mechanisms on a system-wide basis.

To tackle these three issues, our approach leverages DiaSuite,
a toolkit for developing pervasive computing systems that has
been developed by the Phoenix research group. DiaSuite covers
the entire development lifecycle: design, implementation, testing,
and deployment. The design specification of an application
is used to generate a dedicated programming framework that
provides support and guidance to the application developer in
relation to functional requirements.

our approach

In this thesis we propose to extend our design language to man-
age resource conflicts throughout the development process. The
design specification of a software system is enriched with conflict-
handling declarations. These declarations are used to automati-
cally detect resource conflicts, provide support for implementing
their resolution, and generate and parameterize the enforcing
mechanism. As a result, the conflict-handling logic is separated
from the application logic and the developer is liberated from low
level tasks, such as implementing and configuring the enforcing
mechanism.

To facilitate the integration of security aspects into a perva-
sive computing system, we have identified several places in the
core system and the generated framework where security code
has to be added. We combine abstractions for these places on
design level with aspect-oriented programming to enable easy
integration of security aspects system-wide. As a result, the de-
veloper is shielded from low level implementation details of the
middleware and the dedicated framework.

assumptions

Privacy is very complex and difficult to achieve in pervasive
computing. In this thesis we limit our solution to improving

27

28 problem statement

privacy in smart homes, where occupants have full control over
the deployed devices and the collected data. We do not consider
the problems that occur in public pervasive computing environ-
ments such as shopping malls, for example, where privacy is
more difficult to protect due to the permanent recording by third
parties [11]. To handle these problems, identity management
techniques such as anonymizing and pseudonymizing of data
can be used [11, 23]. Additionally, the information repository can
be kept local [77], i.e., ensuring that data collected in the shopping
mall will not be used elsewhere. Other important concepts are
trust and reputation between users and the data collector [30].

4
D I A S P E C

Domain specific languages (DSLs) are very
good at taking certain narrow parts of pro-
gramming and making them easier to un-

derstand and therefore quicker to write,
quicker to modify and less likely to breed bugs.

— Martin Fowler [27]

This chapter introduces DiaSpec [13], our design language for
pervasive computing systems that is part of DiaSuite1. DiaSuite is
a suite of tools to support the development process. Specifically,
the DiaSuite approach covers the entire development lifecycle and
provides guidance and support to implementing the application
logic. We present how to design and implement an application
that is refined with security concerns in the chapters ahead.

4.1 the sense-compute-control (scc) pattern

The DiaSpec language enforces an architectural pattern, named
sense-compute-control, commonly used in the pervasive com-
puting domain [20]. This pattern distinguishes three types of
components, as depicted in Figure 5: (1) resources, which provide
sensing and actuating capabilities on a pervasive computing envi-
ronment2, (2) contexts, which aggregate and process sensed data,
and (3) controllers, which receive information from contexts and
invoke actuators. This architectural pattern goes beyond the per-
vasive computing domain and enables high-level programming
support and a range of verifications [12, 14, 15, 29].

Figure 6 shows how a DiaSpec description drives a five-stage
development process. (1) A domain expert declares a taxonomy
of resources that can be found in the pervasive computing en-
vironment. (2) An architect describes the interactions between
resources, contexts and controllers. Given a taxonomy and an
application design, a compiler, named DiaGen, generates a cus-
tomized programming framework in Java. (3) The generated
framework is used by the developer to implement the application.

1 DiaSuite is freely available http://diasuite.inria.fr and open source.
2 Resources are devices (e.g., a motion detector) or software components (e.g., an

address book).

29

http://diasuite.inria.fr

30 diaspec

Compute

Contexts

Resources

sensed by

act on

Sense
(raw data)

Sources

Actions

Resources

Pervasive

Environment

Computing

Controllers

Applications

(orders)

Control

(context data)

Figure 5: DiaSpec design pattern

Figure 6: DiaSpec development cycle

4.2 describing the environment 31

(4) The application code can be tested as is, prior to deployment,
using a simulator for a pervasive computing environment, named
DiaSim [7]. (5) A system administrator can deploy the application
in a real pervasive computing environment.

We now focus on the first three steps of our development pro-
cess with an application that treats different types of emergencies
in a building.

4.2 describing the environment

First, the domain expert declares the available resources of a
pervasive computing environment, as is done using an interface
description language (e.g., WSDL3) to declare external resources.
In DiaSpec, this process is supported by a language layer dedi-
cated to describing classes of entities that are relevant to a given
application area. An entity declaration models sensing capabil-
ities that produce data, and actuating capabilities that provide
actions. Specifically, a declaration includes a data source for each
one of its sensing capabilities. An actuating capability corre-
sponds to a set of method declarations. Additionally, attributes
are included in an entity declaration to characterize properties
about instances (e.g., their location). Entity declarations are orga-
nized hierarchically, allowing entity classes to inherit attributes,
sources, and actions.

Listing 1 shows an excerpt of the taxonomy for the emergency
application. In particular, to detect an intrusion, the application
uses several classes of entities that are deployed in the home:
keypads, cameras, break detectors, alarms, doors, and messen-
ger services. Keypads tell if the home is in the security mode.
Cameras are used as motion detectors, and to track and take
pictures of the intruder. The break detectors indicate broken
doors and/or windows. Upon the detection of an intrusion, the
doors are locked, the alarms are turned on, and the occupants
are notified via a messenger service.

The domain expert introduces the resource classes with the de-
vice keyword. Lines 2 to 4 of Listing 1 define a root device, which
introduces the location attribute. Attributes serve mainly as filters
for entity discovery in the pervasive computing environment.

The source and action keywords define the capabilities of an
entity. Line 12, for example, declares that cameras provide a
boolean value to the smart home, indicating the presence of
people. Cameras also provide the action Move (line 14) that is
further detailed in lines 39 to 43.

3 Web Service Description Language http://www.w3.org/TR/wsdl20

http://www.w3.org/TR/wsdl20

32 diaspec

1 /* Description of the available entities. */

2 device LocatedDevice {

3 attribute location as Location;

4 }

5 device Alarm extends LocatedDevice {

6 action OnOff;

7 }

8 device BreakDetector extends LocatedDevice {

9 source broken as Boolean;

10 }

11 device Camera extends LocatedDevice {

12 source presence as Boolean;

13 source picture as JPEG;

14 action Move;

15 action Track;

16 }

17 device Door extends LocatedDevice {

18 source status as DoorStatus;

19 action LockUnlock;

20 }

21 device Keypad extends LocatedDevice {

22 source status as HomeStatus;

23 }

24 device Logger {

25 action Log;

26 }

27 device Messenger {

28 action Send;

29 }

30

31 /* Description of the supported actions. */

32 action LockUnlock {

33 lock();

34 unlock();

35 }

36 action Log {

37 logEvent(event as String);

38 }

39 action Move {

40 roll(degree as Integer);

41 pitch(degree as Integer);

42 yaw(degree as Integer);

43 }

44 action OnOff {

45 on();

46 off();

47 }

48 action Send {

49 send(message as String);

50 send(picture as JPEG);

51 }

52 action Track {

53 trackPresence();

54 stopTracking();

55 }

Listing 1: Extract of the emergency management taxonomy used by the
intrusion module

4.3 designing the application 33

1 /* Context components. */

2 context Occupancy as Boolean indexed by location as Location {

3 source presence from Camera;

4 source status from Keypad;

5 }

6 context Intrusion as Boolean indexed by location as Location {

7 context Occupancy;

8 source broken from BreakDetector;

9 }

10 context Surveillance as JPEG indexed by location as Location {

11 source picture from Camera;

12 }

13

14 /* Controller component. */

15 controller IntrusionCtrl {

16 context Intrusion;

17 context Surveillance;

18 action LockUnlock on Door;

19 action Log on Logger;

20 action OnOff on Alarm;

21 action Send on Messenger;

22 action Track on Camera;

23 }

Listing 2: Extract of the design description of the intrusion module of
the emergency application

4.3 designing the application

To support application design, the DiaSpec language offers a
language layer based on the design pattern depicted in Figure 5,
and comprises resource, context and controller components.

To illustrate the design layer, let us examine the emergency
application. Listing 2 presents an excerpt of the corresponding
DiaSpec declarations, describing the intrusion module. Figure 7

shows a graphical view of the intrusion module. The arrows
indicate the flow of information. The resources at the bottom
of the diagram provide information to context components; the
resources at the top provide the controller components with
actions on the environment.

The cameras in the rooms transmit a boolean value to the
Occupancy component indicating the presence of persons. Lines 2

to 5 introduce this component using the context keyword. The
source declarations within define the input of this component,
e.g., presence from cameras (line 3) and status from keypads (line 4).
The as keyword in line 2 is followed by the type of the output
value, in this case Boolean. This value is indexed by a location:
the room were the presence is detected. Another context compo-
nent, Intrusion, uses the information provided by the Occupancy

component and break detectors that are deployed at the doors

34 diaspec

HomeStatus

Keypad

Boolean

Break
Detector

Door Alarm

OnOff

Messenger

Send

Logger

LockUnlock Log

Camera

Move/Track

I
n
t
r
u
s
i
o
n

M
o
d
u
l
e

JPEG/Bool

Camera

Intrusion
Surveillance

Intrusion

CTRL

Occupancy

Figure 7: Design of the intrusion module

and windows (lines 6 to 9), to determine whether there is an intru-
sion. Eventually, if there is an intruder, the IntrusionCtrl compo-
nent is invoked. It is declared by the controller keyword (line 15).
This component declares two input sources using the context
keyword and referring to Intrusion and Surveillance4 (lines 16

to 17). The action keyword defines the actuator operations that
can be invoked by a controller component. In our example, the
IntrusionCtrl component can lock/unlock doors, turn on/off
alarms, set cameras to the tracking mode, log events, and notify
the occupants via messenger services (lines 18 to 22).

4.4 implementing the application

The DiaSpec compiler, DiaGen, is implemented using the ANTLR
parser generator [56], and uses the declarations in the taxon-
omy and the application design to generate a dedicated Java
programming framework and a software layer, DiaEnv.

4 The Surveillance component is used to retrieve pictures from the cameras.

4.4 implementing the application 35

Figure 8: DiaSpec/DiaGen generated code structure.

4.4.1 DiaEnv

DiaEnv supports runtime execution of applications, e.g., com-
ponent registration and discovery. On entering the pervasive
computing environment, a component registers at the local reg-
istry providing its signature, e.g., capabilities and attributes.
After a successful registration, the component can be acquired
via the component discovery service.

In addition to performing runtime consistency checks, DiaEnv
abstracts over the communication layer, allowing to transparently
deploy a systems implementation. To do so, DiaGen leverages
existing distributed-system technologies by generating glue code
to customize them with respect to the needs of pervasive com-
puting. Currently, DiaGen supports local, Web Services [17],
RMI [21], and SIP [68] technologies, in addition to our simulation
environment DiaSim [7] (Figure 8).

4.4.2 The DiaSpec generated framework organization

Given a software design declaration, the DiaGen compiler gen-
erates a typed framework on which to develop the distributed
application.

For each action and (implicit) query declaration5, DiaGen in-
cludes a Java interface defining the provided methods. Similarly,
each type of event a component may subscribe to, creates a Java
interface defining a listener to that event.

5 Whenever a component declares a source or context as input, it may implicitly
query the concerning value.

36 diaspec

1 public interface CameraTrack {

2 void trackPresence(RmiRemoteServiceInfo source) throws

RemoteException;

3 void stopTracking(RmiRemoteServiceInfo source) throws

RemoteException;

4 }

Listing 3: The Java interface generated for the Track action that was
declared for the Camera device in Listing 1

For each component definition (device, context, controller), Dia-
Gen includes an abstract class with abstract method definitions
for the provided actions, queries, and event listeners. The devel-
oper implements the application logic by subclassing a DiaGen-
generated abstract class. This pattern, generation gap [27], en-
sures a clean separation between programming support and
implementation code.

To support the developer during the implementation, DiaGen
generates a proxy interface of the providing component (e.g., a
device) that exposes a limited view of its capabilities (e.g., sources
and actions) to the requiring component (e.g., a controller). This
is done for each couple of components that are connected. In
DiaSpec, all sources and contexts that are used as input imply a
connection, as do actions that controller can invoke on devices.

The proxies only provide the methods of the connected inter-
faces. For example, Listing 2 declares that IntrusionCtrl uses
the action Track of the Camera device (line 22). As a result, Dia-
Gen generates a Java interface (Listing 3) that must be declared
by both abstract classes AbstractCamera and CameraProxy.

Let us illustrate the implementation of the application logic
by considering the declaration of the IntrusionCtrl component
in Listing 2. This controller component relies on two contexts,
Intrusion and Surveillance, and uses several devices to handle
intrusions.

Listing 4 shows an implementation of this controller com-
ponent. Most of the application logic can be found in the
onIntrusion method (lines 8 to 24). The generated framework
supports the developer with three parameters in this
method (line 8):

• IntrusionValue contains the boolean value indicating an
intrusion, and the values of the indices, in this case the
location (Listing 2, line 6).

• GetContextForIntrusion contains a set of proxies of other
context components the controller connected to. It is used

4.4 implementing the application 37

in line 19 to get a picture of the room where the intrusion
has been detected from the Surveillance context.

• DiscoverForIntrusion contains a set of proxies that allows
the controller to discover and act on instances of the de-
ployed devices.

1 public class IntrusionCtrl extends AbstractIntrusionCtrl {

2

3 public IntrusionCtrl(ServiceConfiguration serviceConfiguration) {

4 super(serviceConfiguration);

5 }

6

7 @Override

8 public void onIntrusion(IntrusionValue intrusion,

GetContextForIntrusion getContext, DiscoverForIntrusion

discover) {

9 if (intrusion.value()) {

10 Location loc = intrusion.indices().location();

11 String message = " Intrusion detected at : " + timeStamp() +

12 " in room " + loc.toString();

13 discover.doors().all().lock();

14 discover.alarms().all().on();

15 discover.loggers().anyOne().logEvent(message);

16 discover.cameras().whereLocation(loc).trackPresence();

17 discover.messengers().anyOne().sendMessage(message);

18 discover.messengers().anyOne().

19 sendPicture(getContext.surveillance(loc));

20 }

21 else {

22 discover.alarms().all().off();

23 }

24 }

25

26 @Override

27 public void onSurveillance(SurveillanceValue surveillance,

GetContextForSurveillance getContext,

DiscoverForSurveillance discover) {

28 // Do nothing.

29 }

30

31 public String timeStamp() {

32 Calendar cal = Calendar.getInstance();

33 SimpleDateFormat sdf = new SimpleDateFormat();

34 return sdf.format(cal.getTime());

35 }

36 }

Listing 4: Implementation of the IntrusionCtrl component

Lines 13 to 19 show the various actions the controller executes if
an intrusion has been detected. Note that the framework supports
only interactions with components that have been specified in the
application design (e.g., IntrusionCtrl cannot access methods of
the Move action of Camera).

38 diaspec

The generated method onSurveillance (lines 27 to 29) does
not require an implementation, since the concerning context com-
ponent (i.e., Surveillance) is not supposed to publish events. It
is only used by IntrusionCtrl to retrieve current pictures from
the cameras6. Cassou et al. [15] address this issue of unused
methods by enriching the application design with interaction
contracts between components. This allows a more precise de-
scription of the information flow within applications and results
in a more specialized framework, e.g., the Surveillance context
would not provide the possibility to publish events. The interac-
tion contracts are not detailed in this work, we only refer to them
in Chapter 10 concerning future work.

The timeStamp method (lines 31 to 35) is a helper method that
provides the current time that is used in the messages send to
the occupants and the logger.

4.5 summary

This chapter presented DiaSpec, our design language for perva-
sive computing systems. We illustrated how the functionalities
of applications are designed and implemented throughout the
different development phases. But, as we mentioned in the previ-
ous chapter, functional requirements are not sufficient. Security
concerns have to be addressed during the development process as
well. The next chapters present our approach to integrate security
concerns into the existing development process of DiaSpec. To do
so, we reuse existing information, e.g., the design specification,
and introduce missing information in an unobtrusive way.

6 This detour is necessary to be conform to the SCC paradigm.

Part II

A C C E S S C O N T R O L

5
R E S O U R C E C O N F L I C T H A N D L I N G

In future smart homes functionality will be pro-
vided to the inhabitants by software services de-
coupled from the underlying hardware devices.
While this will enhance flexibility and will al-

low to provide cross-functionalities across multi-
ple devices it will also lead to resource conflicts.

— Retkowitz and Kulle [66]

Typically, a pervasive computing environment consists of mul-
tiple applications that gather data from sensing devices, compute
decisions from sensed data, and carry out these decisions by
orchestrating actuating devices.

The rapid development of new devices (i.e., resources), and
development tools opened to third-parties, have paved the way to
an increasing number of applications being deployed in pervasive
computing environments. These applications access resources
without any coordination between them because a pervasive com-
puting platform needs to evolve as requirements change. In this
situation, it is very common for a resource to be accessed by mul-
tiple applications, potentially leading to conflicts. For example,
in a home automation system, a security application that grants
access to the home can conflict with another application dealing
with emergency situations like fires, preventing the building to be
evacuated. In fact, conflicts do not only occur across applications
but also within an application. For example, different modules
of an application may be developed independently of each other,
creating a risk that conflicting orders to be issued to devices.
Detecting, resolving and preventing intra- and inter-application
conflicts is critical to make a pervasive computing system reli-
able. To do so, a systematic and rigorous approach to handling
conflicts throughout the development lifecycle is required.

Detecting conflicts is a daunting task. Pervasive computing
systems are complex and involve numerous applications that may
conflict on one or multiple resources. Scaling up conflict handling
for real-size pervasive computing systems requires to distinguish
potential conflicts from safe resource sharing. This may depend
on the type of a resource, for example, a conflict may occur on a
resource providing mutually exclusive operations (e.g., locking
and unlocking a door). This may also depend on the applications

41

42 resource conflict handling

being deployed in a pervasive computing environment (e.g., two
applications may access a device inconsistently), precluding appli-
cation developers from anticipating potential conflicts. Without
any support, detecting potential conflicts requires to examine the
code of all the applications to identify each resource usage, and
determine whether it may conflict.

After potential conflicts are pinpointed, it is necessary to re-
solve each of them. It requires intimate knowledge about the
code of the corresponding applications to resolve the conflicts by
making code changes. Because of the lack of high-level program-
ming support, writing system-wide conflict-handling strategies
is often overlooked. This situation results in polluting the logic of
applications with ad hoc code, compromising the system main-
tainability.

The situation is exacerbated by the fact that pervasive comput-
ing environments are prone to changes: applications as well as
resources emerge, evolve, and may disappear over time. These
changes directly impact conflict management. This problem is
well known in the telecommunications domain where it was
observed that the number of potential conflicts grows exponen-
tially as new applications are added to an existing system [43].
Manually handling conflicts thus becomes impractical.

Overview of our approach

Managing conflicts is often decomposed into three stages: de-
tection, resolution and prevention [43]. In practice, these stages
crosscut the development lifecycle of applications and pervasive
computing systems.

We introduce an approach to conflict management that covers
the lifecycle of a pervasive computing system. It consists of
a design method for applications, supported by declarations
and tools, separating conflict management tasks. This approach
facilitates the work of architects, developers and administrators:
requirements for conflict management are propagated throughout
the development stages.

Our approach leverages DiaSuite and extends our design lan-
guage DiaSpec (Chapter 4) with conflict-handling declarations
that allow domain experts to characterize resources from a conflict-
management viewpoint. This information, in combination with
the design descriptions, allows to automatically pinpoint places
where conflicts can occur.

To resolve the detected conflicts, we propose to raise the level of
abstraction beyond the code level, by providing declarative sup-
port for conflict resolution. Within an application, the developer

5.1 delimiting resource conflicts 43

uses declarations to specify states for a pervasive computing sys-
tem and order them with respect to their critical nature (e.g., fire
is more critical than intrusion). These states are enabled and
disabled depending on runtime conditions over the pervasive
computing system (e.g., fire detection). State changes are used
to update access rights to conflict-sensitive resources (e.g., in
case of fire, the fire module takes precedence over the intrusion
module). Our approach is incremental in that states and priori-
ties can be added as a pervasive computing system is enriched
with new applications. Its declarative nature allows to prevent
conflict-handling logic from polluting the application logic.

Conflict-extended architecture descriptions are used to gener-
ate customized programming frameworks. These frameworks
guide and support the implementation of the conflict-handling
logic. Generating the underlying framework from the architecture
description guarantees that the architecture implementation can
only access the required resources. Additionally, runtime support
ensures that access to resources are granted in conformance with
conflict-handling declarations.

5.1 delimiting resource conflicts

The previous chapter introduced the intrusion module that is
part of the emergency application. Another part of the emergency
application is dedicated to detecting and managing fire situations.

Figure 9 shows a graphical view of the emergency application,
including both modules, fire and intrusion. The fire module
works as follows. Temperature sensors of a room send their
values to the AvgTemp component. The value is indexed by a
location: the room where the average temperature is measured.
Another context component, SmokeDetected, gathers information
from smoke detectors. Both contexts, the average temperature
and the smoke information, are used by the Fire component to
determine whether there is a fire in the home and its location.
Eventually, if there is fire, the FireCtrl component is invoked.
In our example, the FireCtrl component can lock/unlock doors,
turn on/off alarms and sprinklers, and log events. The complete
specification of the emergency application can be found in the
appendix A (Listing 13 and Listing 14).

Let us now define our notion of resource conflict and exam-
ine the issues to be resolved within the DiaSpec development
approach.

44 resource conflict handling

E
m
e
r
g
e
n
c
y

A
p
p
l
i
c
a
t
i
o
n

JPEG/BoolFloat

Alarm

Surveillance

Door

Intrusion

Logger

Occupancy

Camera

Smoke
Detected

OnOff

AvgTemp

OnOff

FireCtrl

Log

Intrusion

Ctrl

Fire

SendTrack

MessengerSprinkler

LockUnlock

DoorStatus HomeStatus

Smoke
Boolean

Break
Detector

KeypadCamera
SensorSensor

Temp. Door

Float

DoorStatus

Figure 9: Architecture of the emergency application

Intra-application resource conflicts

Sensors and actuators need to be distinguished when it comes
to resource conflicts. Indeed, sensors can sustain many con-
sumers, requesting values either directly (e.g., remote procedure
call) or via some runtime support (e.g., notification server). The
situation would be comparable for actuators, if only they did
not have side effects on the environment. This is illustrated
in Figure 9, where the FireCtrl and IntrusionCtrl controllers
share resources. These controllers can, for example, have con-
flicting effects on the door resource, depending on whether the
current state of the pervasive computing environment requires
anti-intrusion or firefighting measures.

What this example illustrates is that resolving resource conflicts
relies on some notion of state that determines which consumer
should acquire the resource. A pervasive computing environment
can be in different states depending on a variety of conditions.
Expressing these conditions is a key to providing a practical
approach to conflict resolution. To separate this concern from the
application logic, the approach should target the design level. In
the door example, we would need to introduce states, enabled
by conditions over relevant sensed data (e.g., smoke intensity,
motion detection). Based on the enabled states, the attempts of
the controllers to acquire the doors would be prioritized.

5.2 conflict management 45

Alarm
OnOff Log

LoggerDoor
LockUnlock

FireCtrl Ctrl
Intrusion AccessCtrl

Contexts Contexts

S
e
c
u
r
i
t
y

E
m
e
r
g
e
n
c
y

Sources Sources

Devices

Figure 10: Potential resource conflicts between multiple controller
components (intra and inter application)

Note that some actuators can be insensitive to conflicts. An
example is the log action (Listing 1, lines 36 to 38): it can record
data in any order, assuming each invocation has the necessary
contextual information (e.g., a time stamp).

Inter-application resource conflicts

The emergency application is only a part of the home automation
system. The system administrator also deploys a security applica-
tion to manage access to the home. Figure 10 shows a simplified,
graphical representation of both applications: emergency and
security. Both applications operate the same type of resources, in
this case door and logger.

As can be noted, resource conflicts occur at different levels
and must be managed globally. Even though, conflicting usage
of resources can be resolved with respect to a given state, there
needs to be a global, system-wide approach to combining unitary
strategies in a transparent and predictable way.

5.2 conflict management

This section presents our approach to conflict management. It
addresses the requirements discussed previously, and illustrates
the approach with the home automation system.

46 resource conflict handling

5.2.1 Detecting potential conflicts

Our approach to conflict management revolves around the Dia-
Spec description of an application. Such a description exposes
the interactions with actuators, allowing resource conflicts to be
detected within an application, for the application developer, and
between applications, for the system administrator.

Let us examine how the intra-application conflicts between
the fire and the intrusion modules are solved (Figure 10). The
process is the same for inter-application conflicts.

In DiaSpec, conflicts may occur when a resource is used by
more than one controller component. Information about the
resource usage can be extracted from the DiaSpec description of
an application. This information needs to be refined to account
for actions that are insensitive to resource conflicts (e.g., the Log

action).

Categorizing actions in the taxonomy

We extended the taxonomy language of DiaSpec with effect dec-
larations for resource actions. An effect declaration applies to an
action (i.e., an interface and its associated operations), which is
part of a device declaration. In practice, we have identified three
main effects that need to be expressed. First, a device includes
an action with operations that are mutually exclusive in their
effects. For example, a door is either locked or unlocked. Such an
action is declared with the exclusive keyword. Second, a device
combines operations that interfere with each other. For example,
a camera supports two actions: a tracking mode and standard
movement operations; if used simultaneously, they interfere with
each other. The list of interfering actions of a device is declared
with the interfering keyword. Lastly, when an action is conflict
insensitive, it is declared without effect keywords.

In our example, the domain expert has to enrich the declaration
of Door, Alarm and Sprinkler with the exclusive keyword, and
the Camera device with the interfering keyword, as is shown in
Listing 5. The Log and Send actions are left unchanged because
they are conflict insensitive.

Analyzing the architecture description

Given the taxonomy declarations enriched with conflict-handling
information, the application developer and, later in the process
the system administrator, investigate potential resource conflicts.
A resource usage raises a potential conflict when two or more

5.2 conflict management 47

1 device Alarm extends LocatedDevice {

2 exclusive action OnOff;

3 }

4 device Camera extends LocatedDevice {

5 action Move;

6 action Track;

7 interfering Move, Track;

8 }

9 device Door extends LocatedDevice {

10 source lockedStatus as LockedStatus;

11 exclusive action LockUnlock;

12 }

13 device Sprinkler extends LocatedDevice {

14 exclusive action OnOff;

15 }

Listing 5: Conflict-sensitive devices in the taxonomy

controllers may access it. These controllers may be defined within
an application or across applications. In our approach, potential
resource conflicts are automatically detected from a DiaSpec
description. Conflict resolution is expressed with declarations,
leaving the application logic unchanged.

5.2.2 Declaring conflict resolution

To resolve conflicts, we partition resource users with respect to
a set of states in which a pervasive computing environment can
be. These states are totally ordered with respect to their assigned
priority level; they are associated with resource users (i.e., con-
troller components). For example, our home can be in either of
the following states, listed in order of increasing priority: normal,
security, or emergency. In doing so, applications and controllers,
within an application, can be assigned different states, resolving
their access to conflicting resources.

To complete our approach, we need to enable and disable states
depending on evolving conditions of the pervasive computing
environment. This is done by introducing state component, lever-
aging the DiaSpec notion of context component. Recall that such
a component receives information about the pervasive computing
environment (e.g., smoke, fire, . . .). A state component uses this
information to determine whether the conditions for a given state
hold, producing a boolean value.

Let us illustrate our approach with inter- and intra-application
conflict resolution. Consider Listing 6 where two system state
components are defined (lines 2 to 8): SecuritySt and EmergencySt.
These components are declared with the system keyword to in-
dicate that they apply system-wide, allowing the system admin-

48 resource conflict handling

1 /* System level (inter application) */

2 system state SecuritySt priority 5 to Security {

3 source date from Calendar;

4 }

5 system state EmergencySt priority 10 to Emergency {

6 application state FireASt;

7 application state IntrusionASt;

8 }

9

10 /* Application level (intra application) */

11 application state FireASt priority 15 to FireCtrl {

12 source temperature from TemperaturSensor;

13 source smoke from SmokeSensor;

14 }

15 application state IntrusionASt priority 10 to IntrusionCtrl {

16 context Intrusion;

17 }

Listing 6: System and application state-components declarations

istrator to resolve inter-application conflicts. With the priority
keyword, they are assigned priority values of 5 and 10, respec-
tively, indicating that SecuritySt is less critical than EmergencySt.
Following the to keyword are the applications to which the de-
clared state applies. The conditions under which a state holds
are parameterized by information sources, as is declared for the
SecuritySt state with the Calendar source. As well, the con-
ditions may be parameterized by other states, as is defined by
the EmergencySt state with FireASt and IntrusionASt. In fact,
these two states are used to resolve intra-application conflicts,
promoting state-component reuse – these states are defined in
lines 11 to 17.

Application state components are declared with the applica-
tion keyword by the application developer and apply to con-
troller components declared within an application. For exam-
ple, the FireASt state applies to FireCtrl and IntrusionASt to
IntrusionCtrl. Both controllers, and associated states, are local
to the Emergency application. This local nature also applies to
the priority defined by application states. That is, these priorities
resolve conflicts within an application. In our example, these
declarations prioritize FireCtrl over IntrusionCtrl. In doing
so, intra-application conflicts for resources, such as doors, can
get resolved.

5.2 conflict management 49

5.2.3 Implementing conflict resolution

Declarations of conflict handling are enforced by additional code
produced by DiaGen, shielding the application developer and
system administrator from low-level implementation details.

Let us illustrate the implementation of the conflict-handling
logic by considering the declaration of the FireASt state in List-
ing 6. This state component relies on two information sources,
temperature and smoke, to determine whether the home is on
fire.

1 public class FireASt extends AbstractFireASt {

2

3 private Map<Location, Map<String, Value>> status;

4

5 @Override

6 public void initialize() {

7 status = new HashMap<Location, Map<String, Value>>();

8 discoverTemperatureSensorForSubscribe.all().

subscribeTemperature();

9 discoverSmokeDetectorForSubscribe.all().subscribeSmoke();

10 }

11

12 @Override

13 public void onTemperature(Temperature temperature,

GetContextForTemperature getContext, DiscoverForTemperature

discover) {

14 Map<String, Value> values = getValues(temperature.location());

15 values.put("temperature", temperature.value());

16 status.put(temperature.location(), values);

17 checkFire();

18 }

19

20 @Override

21 public void onSmoke(Smoke smoke, GetContextForSmoke getContext,

DiscoverForSmoke discover) {...}

22

23 private Map<String, Value> getValues (Location loc) {...}

24

25 private void checkFire(){

26 boolean fireDetected = false;

27 for(Location loc : status.keySet()){

28 Map<String, Value> values = status.get(loc);

29 if(values.get("temperature").equals(Temperature.HIGH)
30 && values.get("smoke").equals(Smoke.HIGH)){
31 fireDetected = true;

32 break;

33 }

34 }

35 setFireASt(fireDetected);

36 }

37 }

Listing 7: An implementation of the FireASt state component

50 resource conflict handling

Listing 7 shows an implementation of this state component.
In lines 8 and 9, the component subscribes to all the required
sensors. To keep track of the home situation, the component
stores temperature and smoke values from all locations within
the home. Specifically, the component implementation updates
the value (temperature or smoke) for each location (lines 13 to 21).
After refreshing the value, it checks whether the condition for a
fire holds by calling the checkFire method (line 17). This method
determines whether or not a fire is occurring by publishing a
boolean value (line 35), which in turn will enable or disable
the corresponding state of the pervasive computing system (i.e.,
FireASt).

Analyzing the resolution

Controller components use multiple resources to accomplish their
goals. By defining states, a situation can occur where a controller
component only has access to some, but not all resources it
requires. In our example, if a fire and an intrusion are detected,
IntrusionCtrl can send messages to the logging device, but
cannot lock the doors nor turn on the alarms, since FireCtrl has
the higher priority. While this can be ignored for some controller
components, others may show unwanted behaviour. Currently
our tool uses the information from the declared application and
system states to check if such situations are possible. In the
future we intend to add information at the controller components,
whether a resource is mandatory or optional. This would allow
a more precise analysis. Additionally our tool verifies that all
potential conflicts are resolved.

5.3 implementation

To achieve our conflict management approach, we have extended
DiaSpec, DiaGen, and the DiaSpec runtime. The extended Dia-
Spec runtime is illustrated by our home automation example in
Figure 11. We introduce a ConflictCtrl component that sub-
scribes to state components to gather information about states
that get enabled/disabled at runtime. It combines this infor-
mation with state priorities to compute access rights, and up-
date the enforcer components, associated with each resource
class (e.g., Door). The enforcer components intercept resource
accesses and decide whether or not to grant them. Specifically,
an enforcer component intercepts a method call and creates a
request of the form (controller, action, resource). Such a
request is matched against an access control list (ACL) attached

5.3 implementation 51

to each resource class; this ACL comprises rules of the following
form.

(controller, action, resource, [true|false])

When the request matches an ACL entry, the access to the
resource is granted depending on the boolean value of the corre-
sponding rule. Here we apply multiple security principles (Sec-
tion 2.5): (1) we check every access (complete mediation), (2) we
only grant required accesses1 (least privilege), (3) we deny ac-
cesses if not specified otherwise (fail-safe defaults).

Globally, the conflict management process is performed in two
stages. Statically, potential conflicts are detected based on the
taxonomy and architecture declarations. For each detected con-
flict on a resource, the DiaSpec description is searched to identify
state components dedicated to resolving it. This information is
used to parameterize the ConflictCtrl component. Dynamically,
this component will update the ACL of the enforcer component
of all the resources impacted by a state change. The updated
ACL is calculated based on the enabled/disabled states and their
priorities. Here, our main goals concerning the security princi-
ples are (1) keep the mechanism as simple as possible (economy
of mechanism), which is achieved in using a well-known mecha-
nism (ACL) and a simple conflict resolution strategy by priori-
tizing states, (2) provide as much support as possible to make it
easily applicable during the development process (psychological
acceptability).

In the following we take a more detailed look into the im-
plementation and illustrate how the intra application conflicts
between the fire module and the intrusion module are resolved.

5.3.1 Detecting and resolving conflicts at design time

The information in an ACL is not sufficient to resolve conflicts,
e.g., the states and their priorities are not represented. Therefore
we group access rules in policy objects. Besides the access rules,
a policy contains links to the corresponding applications or con-
trollers, a priority, and an activation condition in form of a state
component.

The idea is to use available information, that is, the taxonomy,
the design description, and the conflict-handling declarations,
to generate a set of conflict free policies (Figure 12). Each pol- Application policies

are local to an appli-
cation and resolve
intra application
conflicts, while
system policies do so
on system level

icy contains rules concerning exclusive and interfering actions.
Conflicts between policies are resolved by comparing priorities.
All specified accesses that pose no problem are grouped in the

1 The required accesses are described in the application design.

52 resource conflict handling

Intrusion

updateACL

Ctrl

Sources Sources

Completely
generated

Logic must be
implemented

FireCtrl

Contexts

Devices

Door
LockUnlock

Conflict
Ctrl

FireASt

Enforcer

IntrusionAst

Figure 11: Extended DiaSpec runtime system

default policy. The default policy is always active and has the pri-
ority zero. Thus it is checked last. Figure 13 shows the decision
process for an access request.

Verifying the resolution

To verify that conflict management is completed, the default pol-
icy is checked for untreated conflicts2. This detection algorithm
can be separated into three steps.

1. It searches for rules that contain the same resource, but
different controllers.

2. It checks for each found rule, using information from the
modified taxonomy, whether the actions the controllers
execute on the resource are marked as exclusive or interfere
with each other. If so, a potential conflict has been detected.

3. It checks whether the controllers are part of the same appli-
cation (intra application conflict) or not (inter application
conflict).

For illustration, we show how the policies for the internal
conflict of the emergency application are generated. In this (sim-
plified) example, both controllers are allowed to operate the doors,
the alarms, and the logger. For doors and alarms, this can cause
conflicts. The application developer resolves the conflicts between
both controllers by declaring application states (Listing 6). These

2 This is sufficient, since the generated policies are per definition conflict free.

5.3 implementation 53

...

...

priority

application pol. #1

application pol. #n

access rules

default policy

access rules

system policy #m

access rules

access rules

system policy #1

system policies
highest
priority

lowest

Figure 12: The generated policies in the system

dedicated declarations are now used to generate conflict free
policies for both controller components.

Listing 8 shows the resulting policies that handle the conflict
between FireCtrl and IntrusionCtrl. Line 1 declares that the
emergency policy has the priority ten, and is active when the
system state EmergencySt is true. Since the emergency applica-
tion has an internal conflict, this policy contains two application
policies, one for each conflicting controller. The fire policy al-
lows FireCtrl to access the doors and the alarms and denies
IntrusionCtrl to do so (lines 3 to 6). The intrusion policy does
the inverse. Lines 16 to 19 define the default policy that contains
all the non-conflicting resource accesses. In this case the rules
that allow both controllers of the emergency application to access
the logging device (lines 17 to 18). Since the logging device was
declared insensitive for conflicts, the conflict handling for the
emergency application is done.

5.3.2 Enforcing the resolution at runtime

At runtime, the ConflictCtrl component ensures that only au-
thorized controllers can access resources and that conflicts are
prevented. It contains all policies and connects automatically
to all state components (Figure 11). After a change of a state
component, ConflictCtrl activates or deactivates the concerned
policy according to the published boolean value. Afterwards it

54 resource conflict handling

Figure 13: The decision process for an access request

derives the ACLs for the affected resource classes and proactively
sends an update to the corresponding enforcer components.

Since resources in a pervasive computing system are likely
to be battery-driven, we consciously burden the ConflictCtrl

component that runs on a server (e.g., the residential gateway).
The overhead of computing ACLs is outweighed by the fact that
on the resource side only a short list has to be checked for each
method call. This ensures that the local overhead is very small.

Other works proposed this structure as well [69, 82, 92]. In
these works, the central decision point is called the policy decision
point (PDP), while the distributed, local enforcing points are
called policy enforcing points (PEP). In our case, ConflictCtrl
is the PDP, while the enforcer components are the PEPs. As
proposed in [92], the enforcer components keep a small instance
of a PDP (in our case the ACL), to be able to make a decision

5.4 summary 55

1 emergency::10::[EmergencySt]{

2 fire::15::[FireASt]{

3 (FireCtrl, LockUnlock, Door, true);

4 (IntrusionCtrl, LockUnlock, Door, false);

5 (FireCtrl, OnOff, Alarm, true);

6 (IntrusionCtrl, OnOff, Alarm, false);

7 }

8 intrusion::10::[IntrusionASt]{

9 (FireCtrl, LockUnlock, Door, false);

10 (IntrusionCtrl, LockUnlock, Door, true);

11 (FireCtrl, OnOff, Alarm, false);

12 (IntrusionCtrl, OnOff, Alarm, true);

13 }

14 }

15

16 default::0::[true]{

17 (FireCtrl, Log, Logger, true);

18 (IntrusionCtrl, Log, Logger, true);

19 }

Listing 8: Policies for the emergency application

locally. This saves a lot of time and prevents the central PDP from
becoming a bottleneck.

5.4 summary

Pervasive computing resources permeate the users lives includ-
ing critical areas (e.g., emergency management). The more the
users rely on technology, the more important it is to ensure
the reliability of said technology. The problem lies in the fact
that applications that run in pervasive computing systems ac-
cess resources without any coordination between them. Without
proper resource management, no guarantees about the system
behaviour at runtime can be given, e.g., firefighting measures
can conflict with anti-intrusion measures. A systematic approach
to detect,resolve, and prevent these resource conflicts is thus
necessary, to make a pervasive computing system reliable.

Our approach to addressing resource conflicts leverages Dia-
Suite and covers the whole development lifecycle. A DiaSpec
design description already contains valuable information. To
include missing information, we enriched DiaSpec with declara-
tions dedicated to conflict handling. The added information is
used to automate conflict detection, support the implementation,
and generate and parameterize the enforcing mechanism.

The implemented mechanism prevents conflicts by enforcing
ACLs for each pervasive computing resource. The ACLs are au-
tomatically updated according to the current state of the system.

6
E VA L U AT I O N

To assess the usability of our approach to resource conflict han-
dling, we applied it to a building management system for an
engineering school [7]. This case study was particularly interest-
ing because it had been specified in DiaSpec and implemented,
prior to the development of our approach. As a result, it could
serve as a reference implementation, and a basis to be extended
with our conflict-handling approach. We focus on the compre-
hensibility and reusability of conflict managing code, and the
ability to detect conflicts. To test the correct behaviour of both
implementations, original and extended, we used our pervasive
computing simulator, DiaSim [7].

Separation between application logic and conflict handling

The original building management system was developed by
members of our group who have expert knowledge in DiaSpec.
They acted as architect, developer, administrator, and used their
expertise to solve the foreseeable conflicts. The lack of proper
support made them resort to ad hoc strategies to resolve resource
conflicts, or classify them as not critical. For example, to prevent
three different controllers to conflict in accessing doors (Fig-
ure 10), they had to introduce a dedicated action to the door
resource for each kind of controller in the taxonomy. This ac-
tion would essentially mimic our conflict resolution strategy,
taking a state as a parameter and determining whether to grant
access to the door. In contrast to our approach, this ad hoc
technique requires to structure the taxonomy with respect to
conflict-handling concerns and to pollute the application code
with conflict-handling logic.

Another ad hoc solution was implemented for the Screen de-
vice. It was used to show the schedule for students, and general
news. To cope with the problem that the displayed informa-
tion switched too fast (e.g., the news application sent a new
message short after the scheduler had done so), a timer was
implemented at the Screen device that ignored messages for
thirty seconds after receiving one. Obviously this could lead to
problems, e.g., if the emergency application is enhanced to show
warning messages or assembly points during an emergency, and
such a message is ignored or delayed due to the timer.

57

58 evaluation

Systematic conflict detection

While Conflicts on the speaker system and the cameras were
classified non-critical and therefore not treated, the conflict on
the alarms was missed. Even though these three conflicts did not
pose a problem to the simulated scenarios, neglecting them could
lead to problems in the future. For example, if the system evolves
and the speaker system is used for alarms, the conflict would
become critical. Indeed, every newly installed application could
use a resource in a critical way. Our approach systematically
analyses the specification for conflicts after each evolution and
detects such problems.

Incremental system development

With our approach, adding a new application to an existing
system requires to declare and implement an additional system
state component, if a new state is needed1. In this case, the new
system state component is independent from other components,
besides the new priority level to be introduced. Without our
approach, it would be necessary to check and adapt local code at
each device the new application is using.

Ease of use

The conflict-handling process is completely integrated into the
development lifecycle of the home automation system. The re-
quired tasks are distributed to the different roles. This has the
advantage that nothing is added later on, but is integrated by
design. By leveraging the existing context components for the
newly introduced states, we benefit of the possibility to easily
interact with any other specified component in the system. Thus,
the state components, which have to be implemented, can ac-
cess (and therefore reuse) any existing context component or
retrieve data directly from deployed devices. The fact that they
are dedicated to conflict handling allows to completely gener-
ate conflict-handling components that interpret the states and
enforce the conflict resolution. Focusing on a single problem
enables us to provide the developer with a maximum of support.
A similar approach for error handling has been implemented by
Mercadal et al. [50].

1 Defining one system state per application is sufficient, because it gives an
application a certain priority on all problematic resources it uses.

evaluation 59

Related work

Conflicts are a major problem in a variety of domains. For ex-
ample in telecommunications, Keck and Kühn show that feature
interaction is an exponential problem that appears when new
services are added to an existing system [43]. This problem can
be directly mapped to pervasive computing, their services and
features are our applications and their actions on resources [8].
Calder and Miller [9] use the Spin model checker to analyze
telecommunication systems. To do so, a system (services and fea-
tures) is modeled in Promela using temporal properties. Our ap-
proach circumvents the feature interaction problem by relying on
existing system specifications and conflict-handling declarations
provided by the domain expert and the application developer.

There exist different strategies to resolve conflicts in pervasive
computing environments. Haya et al. assign a priority to every
operation [33]. The priority is calculated by a central component
using information about the current state, the caller and the
type of operation. In comparison, our approach incurs little
overhead for resource invocations because the enforcer component
is coupled with the resource, preventing any central component
from becoming a bottleneck.

The work closest to ours is that of Retkowitz and Kulle [66].
They use the notion of dependency management for handling
resource conflicts. It is exemplified in the context of smart homes
where it allows fine-grained configuration of a conflict-aware
middleware. It is designed so a user can interact with the system
and set priorities for different applications. In comparison, our
approach is not limited to the home automation domain and cov-
ers conflict management throughout the development lifecycle:
from design to programming, to runtime.

Tuttlies et al. have a different approach to resolving conflicts.
They propose to describe the side effects of an application on
the physical environment [87]. Additionally, each application
states, what it considers a conflict. As a result, they can detect
conflicts between interfering applications. Devising and applying
a suitable strategy is left to the application developer. In contrast,
we aim for a system-wide conflict management to allow system-
wide reasoning.

Part III

P R I VA C Y

7
I N T E G R AT I O N O F S E C U R I T Y M E C H A N I S M S

An aspect can alter the behavior of the base
code (the non-aspect part of a program) by ap-
plying advice (additional behavior) at various

join points (points in a program) specified in a
quantification or query called a pointcut (that

detects whether a given join point matches).

— Wikipedia [91]

In the previous chapter, we used an access control mechanism
to enforce conflict management. Now, our goal is to improve pri-
vacy in the home automation system. Privacy is a key challenge
in the development of pervasive computing systems (Section 2.5).
Even if most middlewares provide support for the implemen-
tation of security policies (e.g., encryption and authentication)
developers must properly design systems to guarantee a correct
implementation of these policies. The security mechanisms that
are necessary for privacy typically impact every aspect of a sys-
tem. As a result, privacy concerns must be dealt with at an early
stage of the application design. Section 2.5 has shown that most
approaches to developing pervasive computing systems ignore
the design phase, thus hindering an early integration.

Aspect-oriented programming (AOP) [44] is a software engi-
neering approach to combining non-functional concerns with
software design. AOP provides techniques, languages, and tools
to systematically represent, modularize and compose concerns
that are crosscutting an entire system.

This chapter presents our approach to defining security con-
cerns alongside the description of a pervasive computing system.
These concerns are automatically mapped into the system imple-
mentation, using an aspect-oriented approach.

7.1 background

Let us now introduce a few notions that are relevant to the rest
of this chapter.

We start with a few concepts of the DiaSpec language that
was presented in Chapter 4. These concepts provide a basis

63

64 integration of security mechanisms

Event

Action

Source

Controller

ControllerContextContext

Context

Device

Context
Device

(1) (3) (4)(2)

RPC

Figure 14: Possible interactions between DiaSpec components

to identify elements that are crosscutting the system design,
and thus required to express aspect-oriented programming for
DiaSpec. Afterwards, we introduce requirements for aspect-
oriented software development (AOSD) at the architecture level.
Later in this chapter we use this information to define an aspect-
oriented language dedicated to DiaSpec.

Interactions between components

Figure 14 shows the possible interactions between DiaSpec com-
ponents1. The communication is realized by two well-known
principles: a synchronous remote procedure call (RPC), allowing
a one-to-one interaction, and the publish/subscribe paradigm,
in which a publisher sends events to receivers registered for the
corresponding event type2.

The restrictions of allowed interactions between DiaSpec com-
ponents (Figure 14) are a result of the sense-compute-control (SCC)
paradigm that is enforced by DiaSpec (Section 4.1). The allowed
interactions are: (1) The source of a device emits events that
are received by context components, or context components can
retrieve the source value via RPC3. (2) & (3) A context emits
an event to other context or controller components, or context
and controller components can access the context value directly
via RPC. (4) Controller components perform actions on device

1 A component is either a device, a context, or a controller.
2 In architecture description languages, the type of interactions between compo-

nents is defined by a connector [36].
3 Actively requesting a value via RPC is later on called query.

7.1 background 65

components via RPC. Note that actions are always of type void

to conform to the SCC paradigm4.

The framework generated by DiaGen supports both interaction
modes when a connection is specified in the design (Figure 14,
cases 1 to 3). The choice of implementation is left to the developer.

Runtime services

Components that enter a pervasive computing system register
to DiaEnv and provide information about their capabilities and
attributes. This information is used by DiaEnv to provide de-
velopers with a service discovery mechanism that filters device
and context component instances according to their type and
their attribute values. A dedicated implementation of this mecha-
nism is generated in conformance with the DiaSpec description.
It corresponds to a typed version of existing service discovery
mechanisms.

Security concerns typically alter the way in which components
interact, that is, their behaviour. As well, they impact runtime
services such as service discovery.

Aspect-oriented programming (AOP)

The decomposition of software into small, meaningful, manage-
able and comprehensible parts has been a core idiom of soft-
ware engineering for decades. A proper separation of concerns
promotes reusability, traceability, adaptation, and comprehen-
sibility. But, the relevance of concerns may vary with respect
to roles: architects, developers and administrators. It may also
vary depending on the stage of the software life cycle. Moreover,
concerns may be constrained by the implementation language
being used. For example, the object-oriented paradigm drives the
decomposition of data structures into classes.

Despite the numerous software engineering approaches to sys-
tem decomposition (e.g., libraries, modules, components, etc.),
achieving a proper decomposition where every concern is cor-
rectly modularized is not possible in practice [84]. Some concerns
are then spread out and mixed; these are said to be crosscutting
the decomposition of the system.

AOSD is a software engineering approach that focuses on the
identification and representation of crosscutting concerns, and
their modularization in separate units, as well as their automated
composition into a complete system.

4 Controllers are not allowed to retrieve information directly from devices.

66 integration of security mechanisms

AOP [44] is a language independent paradigm where aspects
encapsulate crosscutting concerns. In an aspect-oriented lan-
guage, an aspect associates an advice, the actual code of the
concern, with pointcuts that refer to the regions in the base pro-
gram where the advice is to be applied. An aspect weaver then
realizes the coordination of the aspects with the base program,
either statically, e.g., through static code inlining, or dynamically,
e.g., using the host language’s reflection mechanism.

While a significant body of work has focused on the proper
decomposition of system architectures [2], it does not explicitly
focus on crosscutting concerns. Properties such as security and
QoS are inherently crosscutting. Moreover, these properties must
be explicitly specified at design time to reason about them.

7.2 improving privacy

This section introduces two examples of security concerns that
crosscut a system design. We revisit these examples in Sec-
tion 7.3.3 to illustrate the expressiveness and effectiveness of our
approach.

7.2.1 Managing certificates for SSL communication

Authentication, confidentiality and integrity are key objectives
for ensuring privacy. Their effective implementation depends on
numerous factors, such as the network type, the level of trust
between users, etc.

Let us consider the example of the RPC. It is a well-known
mechanism to perform remote computations and to exchange
messages in distributed systems. RMI is the Java application pro-
gramming interface that performs the object-oriented equivalent
of an RPC. While RMI offers a simple programming interface, it
provides no security guarantee: RMI is built on top of the Java
remote method protocol, which exchanges serialized Java objects
in clear.

In this situation, good practices to achieve a secure design
require the use of a secure channel [82]. The secure socket
layer (SSL) is a wide spread protocol used to secure transmission
in distributed systems. SSL performs authentication and encryp-
tion. Operationally, SSL requires participants to store certificates
of trusted entities. Fortunately, the RMI API provides support
for RMI over SSL. In practice, developers pass a reference to a
TrustStore containing certificates of trusted entities to the RMI
API that transparently performs authentication and encryption.

7.2 improving privacy 67

Figure 15: Distribution and verification of certificates

This approach is suitable for the client/server model, where
every client has to hold the server certificate and the server to
eventually have all client certificates. However, its application to
multi agent systems, where entities (dis)appear and (un)register
dynamically, requires additional code to manage certificates.

Figure 15 shows two components of the intrusion module (Chap-
ter 4), the context component Surveillance and the device Camera.
The third component is Registry that is part of DiaEnv. In the
example, Surveillance retrieves an image that is provided by
Camera. Several steps are necessary beforehand: (1) on entering
the pervasive computing environment, devices have to register
and pass their certificates. Registry must then verify the cer-
tificate before proceeding with the registration. (2) Whenever
Surveillance wants to retrieve an image, it must first obtain
instances of Camera from the service discovery service that is pro-
vided by Registry. Registry then returns proxies on instances
of Camera with their certificates. (3) Surveillance may now com-
municate with any of these Camera components via SSL.

As illustrated in Figure 15, the management of certificates
for SSL communication typically crosscuts multiple aspects of a
distributed system, e.g., registration and discovery, in both the
component code and the built-in services (DiaEnv).

68 integration of security mechanisms

Figure 16: Enforcement of Access Control Lists

7.2.2 Enforcing access control lists

The use of SSL connections combined with signed certificates
allows the middleware to enforce authentication and encryption
of communications in a distributed system. Nevertheless, the
security provided by SSL communication is somewhat coarse
grained. In a pervasive computing system, every entity must
verify each access at a fine-grained level. The fact that an entity
is authenticated does not mean that it has access to all resources
and information.

For example in Figure 16, Surveillance may retrieve images of
Camera by using the getPicture method (1). This interaction has
been specified in the design specification5, and thus is allowed
by the authorization enforcer. But, the use of the getPicture

method should be denied for the IntrusionCtrl component (2).
This controller component is only allowed to access the Track

interface of Camera. Even if DiaGen generates a programming
framework for IntrusionCtrl that only exposes a limited view
of Camera (where only specified interfaces are accessible), a mali-
cious developer might escape the programming framework and
craft a request to access every interface exposed by the Camera

component.

To forbid such uncontrolled access, the system must enforce
access control lists upon requests on provided operations. As
shown in Figure 16, the access list enforcement logic should be
externalized from components [82]. That is, on reception of re-

5 Surveillance uses the source picture of the Camera device (Listing 2, line 11).

7.3 the diaaspect language 69

quests, the receiver must query the access controlling mechanism
to verify that the caller is allowed to request a particular infor-
mation or action from the callee. Indeed, in Section 7.3.3 we are
extending the access control from the previous chapter to include
all context components as well. This is done to restrict access to
information, and thus to treat information leaks that are a major
threat for privacy.

Again, the implementation of the access control enforcement
impacts multiple regions of the design; that is, every interface
entry point of device and context components.

7.3 the diaaspect language

The previous section presented two examples of security concerns
that crosscut the design of a system. To apply AOP techniques
to such a system design, we developed DiaAspect, an aspect-
oriented language for DiaSpec. This section first describes the join
point model. A join point refers to a region in the DiaSpec design
description and/or DiaSpec generated programming framework,
where aspect code is injected.

Afterwards we present our pointcut language. Pointcuts rep-
resent the occurrence of one or more join points. A pointcut
is a predicate; it may or may not match the current join point.
In addition, a pointcut may expose information specific to the
underlying join points at runtime.

Finally, we introduce the DiaAspect language.

7.3.1 The join point model

The DiaAspect join point model defines the set of events of inter-
est in a system design description and its associated generated
programming framework. AOP events are represented as mes-
sages in DiaEnv. For the sake of conciseness, only messages of
interest between components of a DiaSpec architecture specifi-
cation are listed here. Each listed message corresponds to two
distinct join points in our model: one at the message emitter and
one at the receiver. Figure 17 illustrate our model.

component registration The register, respectively un-

register, message occurs when a component instance notifies
a registry of the arrival of a component instance, respectively de-
parture, in/from the system. Both the register and unregister

messages have one argument, the signature of the component ar-
riving/leaving. Our model distinguishes the component issuing

70 integration of security mechanisms

Component DiaEnv Component

register(comp_sig)

register_r

RegistrationRegistration

BlankBlank

discover(comp_sig)

discover_r

DiscoveryDiscovery

BlankBlank

action(signature)

ActionsActions

BlankBlank

query(comp_sig,Evt_t)

query_r()

QueriesQueries

BlankBlank

subscribe(comp_sig,Evt_t)

subscribe_r

publish(Evt_t)

event(comp_sig,Evt_t)

Publish / SubscribePublish / Subscribe

BlankBlank

Figure 17: DiaAspect Join Point Model

7.3 the diaaspect language 71

the (un)register message from the actual component that is arriv-
ing/leaving. The register_r, respectively unregister_r, message
correspond to the acknowledgment from the DiaSpec registry to
a component, after a register, respectively unregister, message.
These messages have no argument.

component discovery The discover message occurs when
a component instance queries a registry for a component. A dis-
covery is parameterized with the partial signature of the compo-
nent to search for, that is, the component type and the attributes
on which to apply a filter. On reply, the DiaSpec registry emits a
discover_r message containing an array of components.

actions The action message matches the call or the recep-
tion of a method defined in an action. The corresponding join
point takes the following arguments: the method’s name and the
argument’s types.

queries The query message matches the call or the reception
of a value request, either on a device or a context component.
The corresponding join point takes the following arguments: the
component’s signature that provides the value, and the type of
the value. The providing component answers with a query_r

message that contains the requested value.

event subscription The subscribe message matches the
subscription of a component instance to an event queue. Sub-
scriptions have two arguments, the signature of the publisher
and the type of events the subscribers are interested in. Note
that the publisher (the parameter) is not the same component
as the receiver of the subscription message. Indeed, in DiaSpec,
a subscriber subscribes to DiaEnv, not directly to the publisher.
The response corresponds to the subscribe_r message that has
no argument.

events publishing and reception The publish message
occurs when a component publishes an event. It is parameterized
with respect to the event type and received by DiaEnv. Conse-
quently, DiaEnv emits an event message to each subscriber. That
message has two parameters, the signature of the publisher and
the event type.

72 integration of security mechanisms

1 diaaspect::= (aspect_def | pointcut_def)*;

2

3 aspect_def::=

4 ’aspect’ ID (’before’|’after’|’around’) ’(’ signature ’)’

5 (’returns’ type)? throw? ’:’ pointcut_ref advice;

6

7 pointcut_ref::= ID | pointcut_def;

8

9 advice::= ’{’ /* Java code + thisJoinPoint + proceed */ ’}’

10

11 pointcut_def::= ’pointcut’ ’ID ’(’ signature ’)’ ’:’ pointcut ’;’;

12

13 pointcut::= (’send’ | ’recv’)?

14 (

15 register

16 | unregister

17 | discover

18 | action

19 | query

20 | subscribe

21 | publish

22 | event

23) (&& from(component_signature)? (&&

to(component_signature)?

24 (&& if (expression))?

25 ;

26

27 register::= ’register’ ’(’ component_signature ’)’;

28

29 unregister::= ’unregister’ ’(’ component_signature ’)’;

30

31 discover::= ’discover’ ’(’ component_signature ’)’;

32

33 action::= ’action’ ’(’ action_signature ’)’;

34

35 query::= ’query’ ’(’ component_signature ’,’ event_type ’)’

36

37 subscribe::= ’subscribe’ ’(’ component_signature ’,’ event_type

’)’

38

39 publish::= ’publish’ ’(’ event_type ’)’;

40

41 event::= ’event’ ’(’ component_signature ’,’ event_type ’)’;

42

43 component_signature::= pattern ’(’ (arg_sig (’,’ arg_sig)*)? ’)’;

44

45 arg_sig::= (pattern pattern) | ’..’; /* AspectJ like */

46

47 action_signature::= pattern ’(’ (arg_sig (’,’ arg_sig)*)? ’)’;

48

49 event_type::= pattern;

50

51 pattern::= /* AspectJ like string pattern */

Listing 9: Partial DiaAspect BNF

7.3 the diaaspect language 73

7.3.2 The aspect language

Figure 9 presents the partial BNF of the DiaAspect language. We
chose a syntax similar to AspectJ, an aspect-oriented system for
Java [45]. The benefits of reusing an existing syntax are well-
known from both a user and an implementer perspective. The
latter perspective is illustrated in Section 7.4 where AspectJ is
shown to greatly simplify the implementation of our language.

Our language associates pointcuts with advice written in Java.
An advice holds the implementation of crosscutting concerns and
pointcuts select join points where an advice is to be executed.
We first present our pointcut language. Then, we introduce
the runtime API supporting advice implementation with the
information relative to join points matched at runtime.

7.3.2.1 The pointcut language

In the aspect-oriented paradigm, pointcuts act as join point se-
lectors. In addition, to capture the occurrence of one or more
join points, pointcuts may expose runtime information specific to
these join points. The DiaAspect language proposes eight kinds
of pointcuts for which we distinguish two categories:

• Design specific pointcuts. These directly relate to artifacts
defined by the architect in the system specification. That is,
component relationships (connectors).

• Built-in pointcuts. These correspond to built-in services
provided by the DiaSpec runtime. That is, component
registration, etc.

The following lists the pointcut featured in DiaAspect. We
previously stated that a join point may catch the emission and/or
reception of messages between DiaSpec components. Accord-
ingly, pointcuts in DiaAspect distinguish join points on the emit-
ter and/or the receiver side. If a pointcut is preceded by the send,
respectively recv, keyword, it matches only the join point on the
emitter, respectively receiver, side. If no keyword precedes, join
points on both sides are matched.

register The register pointcut (Listing 9, line 27) matches the
occurrence of register join points and the corresponding
register_r join points, where the registering component
matches the signature given as a parameter. For example,
the pointcut recv register (Device (..)) matches every
register join point received, where the component instance
extends the Device component.

74 integration of security mechanisms

unregister The unregister pointcut (Listing 9, line 29) cap-
tures the occurrence of unregister join points and the cor-
responding unregister_r join points, where the unregister-
ing component matches the signature given as a parame-
ter. For example, the pointcut send unregister (* (..))

matches every unregister join point.

discover The discover pointcut (Listing 9, line 31) matches the
discover and corresponding discover_r join points given a
partial component signature (that is, the type of the compo-
nent requested and the attributes on which the results are fil-
tered). For example, the pointcut recv discover (Camera

(Location loc == "Room 203", ..)) matches the recep-
tion of every discovery operation for components of type
Camera with a specific location attribute.

action The action pointcut (Listing 9, line 33) captures all
action join points for a given method signature. For exam-
ple, the pointcut action (OnOff.*(..)) catches every call
of methods defined in the OnOff action.

query The query pointcut (Listing 9, line 35) catches the oc-
currence of query and their respective query_r join points,
where the providing component signature and the requested
value type match. For example, the pointcut query (Camera

(..), JPEG) matches every image request for cameras.

subscribe The subscribe pointcut (Listing 9, line 37) intercepts
all subscribe calls and their respective subscribe_r join-
points for a given component signature and event type. For
example, the pointcut recv subscribe (* (..), Message)

matches every subscription to an event of type Message,
regardless of the publisher.

publish The publish pointcut (Listing 9 line 39) matches the
occurrence of publish join points for a given event type.
For example, the pointcut publish (Fire) matches every
published Fire event.

event The event pointcut (Listing 9 line 41) catches the occur-
rence of event join points for a given event type and a
publisher signature. For example, the pointcut send event

(Context (..), *) matches the sending of any kind of
event following the publication by a publisher extending
Context.

Pointcuts select join points that correspond to messages ex-
changed between component instances. Pointcuts filter join
points on their types and the values of their arguments. In our
language, an aspect may further filter the messages of interest by
specifying additional clauses alongside pointcuts.

7.3 the diaaspect language 75

from/to As stated before, join points selected by pointcuts re-
late to messages exchanged between DiaSpec components.
Hence, pointcut arguments correspond to the specific con-
tent of these messages. In addition to filtering join points
according to message type and content, one can further
restrict the collected join points by using the from and to

clauses. Given a component signature, the from, respec-
tively to, clause (Listing 9 line 23) restricts collected join
points to those emitted, respectively received, by compo-
nents matching the signature in that clause. In pointcut

&& from(Device(Location *, ..)), join point matching is
limited to those emitted by components extending Device
and with at least one attribute of type Location.

if To allow aspect developers to further specify the region where
to trigger advice, DiaAspect features an if clause similar
to the one of AspectJ. The advice only executes if the given
expression holds true. That expression must be a Java
boolean expression that may refer to the DiaAspect runtime
API and variables bound in the pointcut definition.

7.3.2.2 The runtime API

An advice in DiaAspect is developed in Java. To support devel-
opers in writing advice, DiaAspect features a runtime API that
exposes similar features to those in AspectJ.

The proceed method is similar to the one in AspectJ. It is
a virtual method that has the same signature as the pointcut
matched, and is used in around aspects. Its execution evaluates
the join point matched by the aspect. For example, inside an
aspect on the sending of a register message, the execution
of the proceed method in the advice resumes the execution of
register.

As in AspectJ, DiaAspect also provides an advice-visible vari-
able thisJoinPoint. It exposes reflective information about the
join point that triggered the advice. We extended thisJoinPoint

to expose the architecture specific information about the cur-
rent join point in addition to Java semantic information about
it. For example, in the case of an aspect on an action call,
thisJoinPoint.getCallerSignature() returns the signature of
the caller component.

Because aspects may be developed independently of the Dia-
Spec implementation code, developers can not benefit from the
support of a generated programming framework when writing
advice. Still, to allow developers to publish events and execute
actions, we expose the Processor API that acts as a front-end to
the generated framework. Hence, developers may write an advice

76 integration of security mechanisms

1 /* Adding certificates to a discovery request. */

2 aspect around recv discover (* (..)) && to (registry) {

3 RemoteServiceInfo[] rsis = proceed();

4 for (RemoteServiceInfo rsi: rsis) {

5 rsi.setCert(registry.getCertHelper().

getCertificate(rsi.getID()));

6 }

7 returns rsis;

8 }

9

10 /* Storing the certificates of discovered services locally. */

11 aspect around send discover (* (..) && from (service) {

12 Proxy[] proxies = (Proxy[]) proceed();

13 for (Proxy proxy: proxies) {

14 service.getCertHelper().storeCertificate(

proxy.getRemoteServiceInfo().getCert());

15 }

16 return proxies;

17 }

Listing 10: DiaAspect code managing certificates in a RMI with SSL
distributed system (excerpt)

that interacts with DiaSpec components, while still benefiting
from runtime coherency checks provided by the framework.

7.3.3 Crosscutting concerns implemented with DiaAspect

This section revisits two concerns discussed in Section 7.2 to
illustrate DiaAspect and to show that it allows such concerns to
be concisely modularized at the design level. We first return to the
management of certificates to implement SSL communications.
Afterwards, we revisit the enforcement of access control lists.

Managing Certificates for SSL Communications

Listing 10 presents the DiaAspect code that implements the distri-
bution of certificates for SSL encrypted communications. The first
aspect augments the behavior of the DiaEnv registry on service
discovery to pass the certificates of the discovered services to the
requesting component. The second aspect intercepts discoveries
to store those certificates locally. These certificates can now be
used by the SSL socket factory to encrypt communication. Both
aspects use the CertificateHelper class to store and retrieve
certificates6.

6 An excerpt of the Java implementation can be found in Appendix B

7.4 implementation 77

1 /* Checking if an action is authorized. */

2 aspect around recv action (* (..)) {

3 if (getEnforcer().authorize(thisJoinpoint)) {

4 return proceed();

5 }

6 throw new DiaGenSecurityException(thisJoinpoint);

7 }

8

9 /* Checking if a query is authorized. */

10 aspect around recv query (* (..), *) {

11 if (getEnforcer().authorize(thisJoinpoint)) {

12 return proceed();

13 }

14 throw new DiaGenSecurityException(thisJoinpoint);

15 }

Listing 11: DiaAspect code enforcing access control lists (excerpt)

Enforcing Access Control Lists

Listing 11 contains the DiaAspect code to enforce access control
lists on actions and queries declared in a DiaSpec architecture7.
It contains a single aspect that intercepts any receiving DiaSpec
method call (line 2). We assume that a local object Enforcer

performs the actual enforcement of an access rule. The advice
calls the authorize method on the local enforcer component
(line 3). Depending on the result, the advice either throws a
DiaGenSecurityException, notifying the caller of the failure, or
proceeds with the original method call, as is done for the conflict
management. Indeed, the only difference is that we applied
conflict management only on actions on devices. The given
example in Listing 11 also protects the sources of devices and
context components from forbidden accesses (lines 10 to 15). Note
that context components are not affected by conflicts. Thus, the
ACL of context components does not require to be updated at
runtime.

7.4 implementation

Weaving is the process of coordinating the aspect code with non-
aspect code, i.e. the base program. In our approach, the aspect
code refers to the design description. However, instead of weav-
ing the design description, we inject aspects in the programming
framework generated by DiaGen, and DiaEnv. Specifically, Dia-
Aspect aspects are translated into AspectJ aspects that are woven
into the implementation code. This approach exploits the design

7 Queries are implicitly declared, when a component is connected to a source or
context.

78 integration of security mechanisms

Figure 18: Security concerns crosscut the DiaSpec/DiaGen generated
code structure.

description to adapt the weaving process to a given generated
implementation support.

Section 4.4 already depicted the structure and organization of
the generated Java framework. Figure 18 shows how security
concerns crosscut the generated framework and DiaEnv. Given
this structure, a received message first passes through the specific
communication layer that formats it in a unified form before
passing it to the core layer. The core layer unmarshals the message
content to extract the sender information, the message type,
(e.g., action, query, event, etc.), and its content. The extracted
information is passed to the generated framework, which in turn
dispatches it to the appropriate component proxy and finally
to the component implementation. Similarly, method calls and
event publishing follow the inverse path. One can note that this
particular implementation offers multiple regions to intercept
similar join points, as is shown by the security concerns box
that traverses the stack model vertically (Figure 18). The next
section shows how to benefit from this strategy to optimize aspect
weaving.

DiaAspect Aspects Weaving

The DiaAspect language describes aspects that coordinate join
point regions. These join points refer to artifacts, i.e. components,
connectors and built-in services, which are defined in a DiaSpec
design description and its runtime environment (Section 7.3). An
advice is defined purely in Java (exception made of the proceed
keyword). The compilation and weaving process must connect
the design pointcuts with the generated framework and the im-
plementation code. To do so, DiaAspect aspects are translated

7.4 implementation 79

into AspectJ code that is woven into the generated code and
DiaEnv.

Translating DiaAspect aspects into AspectJ code amounts to
projecting the DiaAspect join point model into the program-
ming framework generated by DiaGen. DiaAspect pointcuts are
translated into AspectJ method call pointcuts on the methods of
the Java interfaces generated by DiaGen. For example, the Dia-
Aspect pointcut action (Track.* (..)) intercepts any method
declared in the action interface Track is translated into the follow-
ing AspectJ pointcut, call(* spec.package.name.interfaces.

Track.* (..)).

The translation of the DiaAspect from and to clauses depends
on the pointcut type, i.e. send or recv pointcuts. In the case of
send type pointcuts, for example in send action(* (..)) &&

from(Controller()) && to(Device), the from clause is trans-
lated to limit AspectJ pointcut matching, to callers extending
the abstract Java class Controller. This is done by using the
following AspectJ code

this(spec.package.name.components.Controller)

and the following invocation

this(spec.package.name.proxies.DeviceProxy)

It results in restricting the object on which a method is called
to DeviceProxy classes.

In the case of a recv, the pointcut is limited to a caller of type
proxy. In addition, the object on which the method is called must
extend the corresponding abstract class.

Listing 12 presents the AspectJ code generated for the Dia-
Aspect code from the example on enforcing access control lists.
The DiaAspect aspects in Listing 11 are translated into AspectJ
aspects. The first aspect is woven around the execution of the
orderReceived method that is called whenever a DiaSpec ac-
tion call is received by a component instance providing that
method. The pointcut limits the matching to classes, extending
the Device class. The second aspect intercepts method calls of
the queryReceived method on all components that extend the
Service class (the base class for every DiaSpec component). The
advice code is left unchanged.

The generated framework is composed of multiple layers (Fig-
ure 18). Depending on the aspect code, it is possible to modify
the aspect projection (weaving) to shortcut these layers. This is
done to optimize performance of the applications. For example,
consider a DiaAspect aspect intercepting all receiving calls for
a given method. Instead of weaving the aspect in the generated
framework layer, we can inject it directly into the communication

80 integration of security mechanisms

1 /* Checking all actions that are executed on devices. */

2 Object around(RemoteServiceInfo rsi, Service callee, String

method) throws DiaGenException:call(Object orderReceived(

RemoteServiceInfo, String, Object...) throws DiaGenException)

&& target(Device+) && target(callee) {

3 if (callee.getEnforcer().authorize(thisJoinpoint)) {

4 return proceed(rsi, callee, method);

5 }

6 throw new DiaGenSecurityException(thisJoinpoint);

7 }

8

9 /* Checking all queries that are sent to components. */

10 Object around(RemoteServiceInfo rsi, Service callee, String

method) throws DiaGenException:call(Object queryReceived(

RemoteServiceInfo, String, Object...) throws DiaGenException)

&& target(Service+) && target(callee) {

11 if (callee.getEnforcer().authorize(thisJoinpoint)) {

12 return proceed(rsi, callee, method);

13 }

14 throw new DiaGenSecurityException(thisJoinpoint);

15 }

Listing 12: AspectJ code generated for the DiaAspect aspect from the
example on enforcing access control lists (excerpt)

layer (i.e. RMI, Web Service, etc.). When the advice code does not
call the proceed method, this optimization avoids unmarshalling
the call up to the application layer. Similarly, weaving can be
specialized depending on the specific communication layer and
of the aspect code.

7.5 summary

This chapter presented our approach to expressing security prop-
erties in system design using an aspect-oriented approach. The
specification of these properties, e.g., secure communication, im-
pact every aspect of a pervasive computing system and cannot be
properly expressed in the traditional component-and-connector
idiom.

To overcome this limitation, we proposed DiaAspect, an aspect-
oriented language dedicated to DiaSpec and its runtime support.
This allows to define regions, where to apply crosscutting security
code, on design level. The design specification of the system is
used to inject code into the generated framework, and DiaEnv.

8
E VA L U AT I O N

Compared to our approach to conflict handling where it is suffi-
cient to implement a configuration of the already existing mecha-
nism in the form of state components, DiaAspect targets to ease
the implementation of these mechanisms. DiaAspect was not
integrated into the DiaSuite development process, it is rather
used to specify where security aspects are to be applied in a
given system design. Obviously, this is done after designing a
system, since the design description is needed to describe the
pointcuts. The security code that is used within the aspects has to
be implemented separately, e.g., the management of certificates is
done by the CertificateHelper class (Appendix B, Listing 15).

Expressiveness

DiaAspect is expressive concerning the interception points in
the system and the type of exchanged message, such as actions
or events, for example. In a pervasive computing system, the
deployed components and the messages they exchange are the
main points of interest for security concerns or non-functional
properties in general. In that, DiaAspect provides valuable aid to
the developer, since the generated framework is complex. This
is due to several abstraction layers that enable the framework to
enforce the design description of an application, and to target
different communication technologies. Additionally, since the
framework is generated, modifications to the framework are lost
when it is regenerated. As a result, the developer has to modify
the framework generator to add code permanently in certain
regions. This is complicated and error prone, and impacts every
generated framework.

Lessons learned

The work on DiaAspect had an impact to the DiaSuite project
in general. Before, the focus lay on functional aspects of appli-
cation development. At that point, the DiaSpec language and
the generated framework were still evolving. Analyzing the
framework concerning the integration of security concerns led
to restructures within the framework to ease this task. Indeed,

81

82 evaluation

non-functional properties are entering the spotlight: temporal
quality of service (QoS) constraints [29] and error handling [50].

Ease of use

Developers that are familiar with AspectJ will easily adopt the
syntax of DiaAspect. The declarations of packages, classes, and
methods is no longer necessary, making the pointcut declarations
easier to define and more readable. Nevertheless, DiaAspect also
inherits the disadvantages of AOP. Projects depend on another
technology (i.e., AspectJ) that introduces new potential sources
of errors. Additionally, debugging becomes more difficult. For
once, because the aspect code is developed separately from the
application code. Another reason is that the debugging mecha-
nism of the integrated development environment (IDE1) provides
less support when multiple technologies are combined (i.e., Java
and AspectJ).

Related work

This section briefly reviews approaches related to the modelling
of crosscutting concerns in architecture design and in pervasive
computing.

Multi-dimensional separation of concerns [84] shows how the
software artifacts, corresponding to different concerns (a.k.a. hy-
perslices), can be merged to generate a full application. This
is the approach chosen by subject-oriented programming [32],
where hyperslices are pieces of code (e.g., partial class hierar-
chies). Aspect-oriented programming [44] is quite similar but it
is asymmetric: it considers the structure of a base program and
it provides pointcut languages to specify where another code
crosscuts the base program and the corresponding pieces should
be woven.

DAOP-ADL [61] is an XML-based architecture description lan-
guage that integrates aspects as first class entities of architecture
description. The interconnection of aspects with components in
DAOP-ADL is specified as evaluation rules on the interfaces of
the architecture. Similarly, Pessemier et al. [59] integrate aspect
entities in the Fractal ADL, by extending the component mem-
brane to support aspect weaving. PRISMA [58] is an ADL that
integrates an aspect-oriented approach directly in the component-
and-connector approach: aspects are modeled as components,
allowing direct reuse of consistency checks and code generation

1 For example, Eclipse http://www.eclipse.org

http://www.eclipse.org

evaluation 83

tools. In comparison to these works, our aspect language Dia-
Aspect is not limited to the artifacts of the ADL but also allows
aspects to coordinate with the built-in services, like component
registration and discovery provided by the generated framework.

Ren et al. [64, 65] present an extension of xADL, an XML ADL,
for modeling security at the architecture level. Their extension
permits architects to control component instantiation, interface
access, and data flow by annotating the components and connec-
tors. In comparison to this work, our approach allows to inject
the necessary code to enforce such policies without modifying
the system architecture. Moreover, by specifying these changes
at the design level, our implementation is reusable with multiple
middleware.

Part IV

R E S U LT S

9
C O N C L U S I O N

In this thesis we have presented an approach to integrating se-
curity concerns into the development process of pervasive com-
puting systems. The focus was access control and privacy, both
problems of particular interest in this domain. We now summa-
rize the thesis results and draw overall conclusions.

Pervasive computing environments, or smart homes in particu-
lar, promise new ways to supporting users in their daily activities.
Developing these supporting applications is challenging, because
pervasive computing combines elements of several domains, thus
inheriting and creating many challenges for the application devel-
oper. Besides functional challenges that have to be addressed to
make application development feasible, security concerns are of
high importance. This is due to the fact that the more technology
permeates the user’s lives, the more he depends on it, and thus,
failures of critical applications can endanger him and his assets.
Therefore, they require adequate protection.

We have presented several approaches that are used to develop
applications for pervasive computing systems and examined their
limitations. Most approaches do not cover the whole develop-
ment lifecycle, thus neglecting the necessity to integrate security
concerns from the start, that is, the design phase. Another prob-
lem was that approaches focused either on security concerns or
on providing functional support for the developer, though both
are essential to develop secure systems.

To tackle these shortcomings, we have presented a domain-
specific approach to architecturing conflict handling of pervasive
computing resources. This approach covers the development
lifecycle of a pervasive computing system. Our approach includes
the automatic detection of potential conflicts, their resolution,
and their prevention at runtime. We have extended our design
language DiaSpec to add information that is required for these
three stages of conflict management. This information is used to
generate code that guides and supports the implementation of
conflict management.

We have introduced new tasks dedicated to conflict manage-
ment in the development process of a pervasive computing sys-
tem. In the resulting process, application and conflict-handling
code are cleanly separated. Furthermore, our approach to conflict

87

88 conclusion

management is incremental and modular, preserving the indepen-
dence between applications. This facilitates reuse of applications,
and makes the conflict management easier to understand and
verify.

To prevent conflicts, our implementation enforces an ACL for
each pervasive computing resource. These ACLs are automati-
cally updated based on the current system state.

To integrate security mechanisms and cope with the problem
that security concerns typically impact every aspect of a perva-
sive computing system, we have proposed DiaAspect, an aspect-
oriented language dedicated to DiaSpec and its runtime support.
We developed DiaAspect on top of both the sense/compute/con-
trol idiom that is used by DiaSpec, and common runtime services
provided (e.g., service discovery). We have shown that DiaAspect
is expressive enough to implement concrete solutions on two
widespread security problems: the distribution of certificates
over an encrypted network and the enforcement of access control
lists in home automation systems.

We have presented the implementation of the DiaAspect aspect
weaver. It injects aspect code into the programming framework
generated for DiaSpec specifications. We implemented our weav-
ing process by translating DiaAspect code into aspects written
in AspectJ, a well-known aspect-oriented system for the Java
programming language. We have also demonstrated how our
translation scheme allows to modify the DiaAspect pointcuts
projection to optimize the woven code according to a design
specification and the structure of generated frameworks.

10
F U T U R E W O R K

Currently, our approach to conflict management treats conflicts
for classes of resources. This strategy applies to situations where
applications act on all instances of a class (e.g., the emergency
application unlocks all doors). We plan to extend this approach
by introducing a location (e.g., a room, a floor) in the conflict man-
agement declaration of an application. The interaction contracts
that were recently added to the DiaSpec language [15] should be
a good basis for this extension. Until now, DiaSpec focused on the
functionality of applications making it difficult to extract useful
information for non-functional properties. This is changing with
the interaction contracts that provide great potential for specify-
ing how components should interact. Gatti et al. [29] extended
these contracts to specify time constraints for components, show-
ing the possibilities they open up on integrating non-functional
properties from the very beginning of a project. Other possibili-
ties are specifying the expected ranges for values (e.g., events or
method parameters) or providing information to configure other
integrated security mechanisms.

For now, our conflict management requires the system admin-
istrators to implement system state components in Java (Sec-
tion 5.2), which is not feasible for smart homes1. To address this
problem and make this task doable for the end-user (in this case
the occupants of smart homes), we plan on leveraging Pantagruel,
a rule based, graphical language that has been implemented on
top of DiaSpec [22]. Pantagruel provides high level constructs
to orchestrate DiaSpec entities in form of rules, exactly what is
required for the state components.

We also plan to expand our model to include the access rights
of users. Access control is a major problem in pervasive com-
puting environments, since it must handle physical and virtual
objects at the same time [71, 86]. A related research direction is
to integrate user preferences into our model to resolve certain
types of conflicts, as proposed by Shin et al. [78].

Another interesting research direction is to protect the privacy
of users by enforcing a more precise access control to information
in the system. Currently, all accesses to context and sources that
are specified in the design are allowed, without any reasoning
about the type of information,e.g., location information about

1 As we mentioned in Section 2.2, the user is not an administrator.

89

90 future work

people might be sensitive, while the temperature of rooms is
not. Hengartner and Steenkiste [34, 35] propose to use relations
between information to derive access rights or change the gran-
ularity of the information, e.g., a location service only provide
the current building instead of a room. A DiaSpec specification
only reveals the data type of the information, nothing about the
information itself is revealed nor are any relations given.

Concerning DiaAspect, we plan to extend the pointcut model
to capture new join points; currently, our pointcut language only
captures join points related to the relationships between compo-
nents or to the built-in services of the runtime. A number of join
points would be of particular interest: component declaration,
component instantiation, etc.

B I B L I O G R A P H Y

[1] Frances Aldrich. Smart homes: Past, present and future. In
Richard Harper, editor, Inside the Smart Home, pages 17–39.
Springer London, 2003. ISBN 978-1-85233-854-1.

[2] João Araùjo, Elisa Baniassad, Paul Clements, Anand Moreira,
Awais Rashid, and Bedir Tekinerdoğan. Early aspects: The
current landscape. Technical report, Lancaster University,
2005.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Ar-
chitecture in Practice (2nd Edition). Addison-Wesley Pro-
fessional, 2 edition, April 2003. ISBN 0321154959. URL
http://www.worldcat.org/isbn/0321154959.

[4] Philip A. Bernstein. Middleware: a model for distributed sys-
tem services. Commun. ACM, 39(2):86–98, 1996. ISSN 0001-
0782. URL http://doi.acm.org/10.1145/230798.230809.

[5] Matthew A. Bishop. The Art and Science of Computer Security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002. ISBN 0201440997.

[6] Matthew A. Bishop. What is computer security?
IEEE Security and Privacy, 1:67–69, 2003. ISSN 1540-
7993. URL http://doi.ieeecomputersociety.org/10.

1109/MSECP.2003.1176998.

[7] Julien Bruneau, Wilfried Jouve, and Charles Consel. Dia-
Sim, a parameterized simulator for pervasive computing
applications. In Proceedings of the 6th International Conference
on Mobile and Ubiquitous Systems (Mobiquitous’09), pages 1–3,
2009.

[8] Muffy Calder and Alice Miller. Detecting feature interac-
tions: How many components do we need? In Objects,
Agents, and Features, pages 45–66, 2003.

[9] Muffy Calder and Alice Miller. Feature interaction detection
by pairwise analysis of LTL properties - a case study. Formal
Methods in System Design, 28(3):213–261, 2006.

[10] Roy H. Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Gee-
tanjali Sampemane, and M. Dennis Mickunas. Towards
security and privacy for pervasive computing. In Proceed-
ings of the International Symposium on Software Security, pages
1–15, 2002.

91

http://www.worldcat.org/isbn/0321154959
http://doi.acm.org/10.1145/230798.230809
http://doi.ieeecomputersociety.org/10.1109/MSECP.2003.1176998
http://doi.ieeecomputersociety.org/10.1109/MSECP.2003.1176998

92 bibliography

[11] Johann Cas. Privacy in pervasive computing environments
– a contradiction in terms. Technology and Society Magazine,
24(1):24–33, 2005.

[12] Damien Cassou. Développement logiciel orienté paradigme de
conception: la programmation dirigée par la spécification. PhD
thesis, Université de Bordeaux, 2011.

[13] Damien Cassou, Benjamin Bertran, Nicolas Loriant, and
Charles Consel. A generative programming approach to
developing pervasive computing systems. In Proceedings
of the 8th International Conference on Generative Programming
and Component Engineering (GPCE’09), pages 137–146, 2009.

[14] Damien Cassou, Emilie Balland, Charles Consel, and Julia
Lawall. Architecture-driven programming for sense/com-
pute/control applications. In Proceedings of the 1st Inter-
national Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH’10), 2010.

[15] Damien Cassou, Emilie Balland, Charles Consel, and Ju-
lia Lawall. Leveraging software architectures to guide and
verify the development of sense/compute/control applica-
tions. In Proceedings of the 33rd International Conference on
Software Engineering (ICSE’11), pages 431–440, 2011. URL
http://hal.inria.fr/inria-00537789/en/.

[16] Harry Chen, Tim Finin, and Anupam Joshi. Ontologies for
Agents: Theory and Experiences, chapter The SOUPA Ontol-
ogy for Pervasive Computing, pages 233–258. Springer, July
2005.

[17] World Wide Web Consortium. Web Services Architecture,
2004. URL http://www.w3.org/TR/ws-arch/.

[18] Nicodemos Damianou, Naranker Dulay, Emil C. Lupu, and
Morris Sloman. The Ponder policy specification language.
In Proceedings of the 2nd International Workshop on Policies for
Distributed Systems and Networks (POLICY’01), pages 18–38,
London, UK, 2001. Springer-Verlag.

[19] Nicodemos Damianou, Arosha K. Bandara, Morris Sloman,
and Emil C. Lupu. A survey of policy specification ap-
proaches. Technical report, Imperial College of Science Tech-
nology and Medicine, London, 2002.

[20] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-Comput.
Interact., 16(2):97–166, 2001. URL http://dx.doi.org/10.

1207/S15327051HCI16234_02.

http://hal.inria.fr/inria-00537789/en/
http://www.w3.org/TR/ws-arch/
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1207/S15327051HCI16234_02

bibliography 93

[21] Troy Bryan Downing. Java RMI: Remote Method Invocation.
IDG Books Worldwide, Inc., Foster City, CA, USA, 1998.
ISBN 0764580434.

[22] Zoé Drey, Julien Mercadal, and Charles Consel. A taxonomy-
driven approach to visually prototyping pervasive comput-
ing applications. In Proceedings of the 1st IFIP Working Con-
ference on Domain-Specific Languages (DSL’09), pages 78–99,
2009.

[23] Claudia Eckert. IT-Sicherheit: Konzepte - Verfahren - Protokolle.
Oldenbourg Wissenschafts Verlag Gmbh, 2004.

[24] W. Keith Edwards and Rebecca E. Grinter. At home with
ubiquitous computing: Seven challenges. In Proceedings
of the 3rd International Conference on Ubiquitous Computing
(UbiComp’01), pages 256–272, London, UK, 2001. Springer-
Verlag. ISBN 3-540-42614-0.

[25] Wolfgang Emmerich. Software engineering and middleware:
a roadmap. In ICSE ’00: Proceedings of the Conference on
The Future of Software Engineering, pages 117–129, New York,
NY, USA, 2000. ACM. ISBN 1-58113-253-0. URL http:

//doi.acm.org/10.1145/336512.336542.

[26] European Parliament and the Council. Directive 95/46/ec
of the european parliament and of the council of 24 october
1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of
such data. Official Journal L281, 23:31–50, 1995.

[27] Martin Fowler. Domain-Specific Languages (Addison-Wesley
Signature Series (Fowler)). Addison-Wesley Professional, 1st
edition, 2010. ISBN 0321712943. URL http://www.worldcat.

org/isbn/0321712943.

[28] David Garlan, Daniel P. Siewiorek, and Peter Steenkiste.
Project Aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 1:22–31, 2002.

[29] Stéphanie Gatti, Emilie Balland, and Charles Consel. A
step-wise approach for integrating QoS throughout software
development. In Proceedings of the 14th European Conference
on Fundamental Approaches to Software Engineering (FASE’11),
pages 217–231, 2011.

[30] Jeremy Goecks and Elizabeth Mynatt. Enabling privacy man-
agement in ubiquitous computing environments through
trust and reputation systems. Presented at CSCW 2002 Work-
shop Privacy in Digital Environments: Empowering Users, 2002.

http://doi.acm.org/10.1145/336512.336542
http://doi.acm.org/10.1145/336512.336542
http://www.worldcat.org/isbn/0321712943
http://www.worldcat.org/isbn/0321712943

94 bibliography

[31] Sandeep K. S. Gupta, Tridib Mukherjee, and Krishna
Venkatasubramanian. Criticality aware access control model
for pervasive applications. In Proceedings of the 4th Interna-
tional Conference on Pervasive Computing and Communications
(PERCOM’06), pages 251–257, 2006.

[32] William Harrison and Harold Ossher. Subject-oriented pro-
gramming: a critique of pure objects. In Proceedings of the
8th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’93), pages 411–
428, 1993. ISBN 0-89791-587-9. URL http://doi.acm.org/

10.1145/165854.165932.

[33] Pablo A. Haya, Germàn Montoro, Abraham Esquivel,
Manuel García-Herranz, and Xavier Alamán. A mechanism
for solving conflicts in ambient intelligent environments.
Journal of Universal Computer Science, 12(3):284–296, 2006.

[34] Urs Hengartner and Peter Steenkiste. Exploiting informa-
tion relationships for access control in pervasive computing.
Pervasive and Mobile Computing, 2:344–367, 2006.

[35] Urs Hengartner and Peter Steenkiste. Avoiding privacy
violations caused by context-sensitive services. Pervasive and
Mobile Computing, 2:427–452, 2006.

[36] Valerie Issarny, Luc Bellissard, Michel Riveill, and Apstolos
Zarras. Systems: Lecture Notes in Computer Science, chapter
Component-Based Programming of Distributed Applica-
tions, pages 327–353. Spriner-Verlag, 2000.

[37] Yongming Jin, Jinqiang Ren, Huiping Sun, Suming Li, and
Zhong Chen. An improved scheme for delegation based on
usage control. In Second International Conference on Future
Generation Communication and Networking (FGCN’08), vol-
ume 1, pages 74–78, 2008. doi: 10.1109/FGCN.2008.43.

[38] Lalana Kagal, Vladimir Korolev, Harry Chen, Anupam Joshi,
and Tim Finin. Centaurus : A Framework for Intelligent
Services in a Mobile Environment. In International Workshop
of Smart Appliances and Wearable Computing at the 21st Inter-
national Conference of Distributed Computing Systems, pages
195–201, 2001.

[39] Lalana Kagal, Jeffrey Undercoffer, Filip Perich, Anupam
Joshi, Tim Finin, and Yelena Yesha. Vigil: Providing trust for
enhanced security in pervasive systems. Technical report,
University of Maryland Baltimore County, 2001.

[40] Lalana Kagal, Anupam Joshi, Jeffrey Undercoffer, Filip
Perich, and Tim Finin. A security architecture based on

http://doi.acm.org/10.1145/165854.165932
http://doi.acm.org/10.1145/165854.165932

bibliography 95

trust management for pervasive computing systems. In Pro-
ceedings of Grace Hopper Celebration of Women in Computing,
2002.

[41] Lalana Kagal, Vladimir Korolev, Sasikanth Avancha, Anu-
pam Joshi, Tim Finin, and Yelena Yesha. Centaurus: an
infrastructure for service management in ubiquitous com-
puting environments, 2002. ISSN 1022-0038. URL http:

//dx.doi.org/10.1023/A:1020385804671.

[42] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy lan-
guage for a pervasive computing environment. In Proceed-
ings of the 4th International Workshop on Policies for Distributed
Systems and Networks (POLICY’03), 2003.

[43] Dirk O. Keck and Paul J. Kuehn. The feature and service
interaction problem in telecommunications systems: A sur-
vey. IEEE Transactions on Software Engineering, 24:779–796,
October 1998.

[44] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Proceedings of
the 11th European Conference on Object-Oriented Programming
(ECOOP’97), pages 220–242, 1997.

[45] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
aspectj. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP’01), pages 327–353,
2001. ISBN 3-540-42206-4.

[46] Arun Kumar, Neeran Karnik, and Girish Chafle. Context
sensitivity in role-based access control. In ACM SigOps,
pages 53–66, 2002.

[47] Marc Langheinrich. Privacy by design - principles of privacy-
aware ubiquitous systems. In Proceedings of the 3rd Inter-
national Conference on Ubiquitous Computing (UbiComp’01),
pages 273–291, 2001.

[48] Marc Langheinrich. A privacy awareness system for ubiq-
uitous computing environments. In Proceedings of the 4th In-
ternational Conference on Ubiquitous Computing (UbiComp’02),
pages 237–245, 2002.

[49] Emil C. Lupu, Naranker Dulay, Alberto Schaeffer Filho, Sye
Keoh, Morris Sloman, and Kevin Twidle. Amuse: auto-
nomic management of ubiquitous e-health systems. Concur-
rency and Computation: Practice and Experience, 20:277–295,
2008. ISSN 1532-0626. doi: 10.1002/cpe.v20:3. URL http:

//portal.acm.org/citation.cfm?id=1345491.1345494.

http://dx.doi.org/10.1023/A:1020385804671
http://dx.doi.org/10.1023/A:1020385804671
http://portal.acm.org/citation.cfm?id=1345491.1345494
http://portal.acm.org/citation.cfm?id=1345491.1345494

96 bibliography

[50] Julien Mercadal, Quentin Enard, Charles Consel, and Nico-
las Loriant. A domain-specific approach to architecturing
error handling in pervasive computing. In Proceedings of
the 1st International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity (SPLASH’10),
pages 47–61, 2010.

[51] Mary Moore. The evolution of telemedicine. Fu-
ture Generation Computer Systems, 15(2):245 – 254, 1999.
ISSN 0167-739X. doi: 10.1016/S0167-739X(98)00067-3.
URL http://www.sciencedirect.com/science/article/

B6V06-4037X3B-B/2/aff1f8221ada60b4c04627b3ff87f986.

[52] Erica Naone. Taking control of cars from afar.
http://www.technologyreview.com/computing/35094/?a=f,
March 2011. (retrieved: 3/15/2011).

[53] OECD. Guidelines on the protection of privacy and trans-
border flows of personal data, 1980.

[54] OMG. The common object request broker: Architecture and
specification. Technical report, Object Management Group,
1995.

[55] Joon S. Park and Ravi S. Sandhu. The UCON usage control
models. ACM Trans. Inf. Syst. Secur., 7:128–174, 2004.

[56] Terence Parr. The Definitive ANTLR Reference: Build-
ing Domain-Specific Languages. The Pragmatic Bookshelf,
Raleigh, 2007.

[57] Anand Patwardhan, Vladimir Korolev, Lalana Kagal, and
Anupam Joshi. Enforcing Policies in Pervasive Environ-
ments. In First International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services (MobiQuitous’04),
pages 199–308, 2004.

[58] Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Bár-
bara Álvarez, Pedro Sanchez, and Juan A. Pastor. Integrating
aspects in software architectures: PRISMA applied to robotic
tele-operated systems. Information and Software Technology,
50(9-10):969–990, 2008. ISSN 0950-5849.

[59] Nicolas Pessemier, Lionel Seinturier, and Laurence Duchien.
Components, ADL & AOP: Towards a common approach.
In Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE) at ECOOP’04, pages 61–69, 2004.

[60] Ruben Picek and Vjeran Strahonja. Model driven develop-
ment – future or failure of software development? In 18th
International Conference on Information and Intelligent Systems
(ISS’07), pages 407–414, 2007.

http://www.sciencedirect.com/science/article/B6V06-4037X3B-B/2/aff1f8221ada60b4c04627b3ff87f986
http://www.sciencedirect.com/science/article/B6V06-4037X3B-B/2/aff1f8221ada60b4c04627b3ff87f986

bibliography 97

[61] Monica Pinto, Lidia Fuentes, and Jose Maria Troya. DAOP-
ADL: an architecture description language for dynamic com-
ponent and aspect-based development. In Proceedings of
the 2nd International Conference on Generative Programming
and Component Engineering (GPCE ’03), pages 118–137, 2003.
ISBN 3540201025.

[62] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H.
Campbell, and M. Dennis Mickunas. Olympus: A high-level
programming model for pervasive computing environments.
In Proceedings of the 3rd International Conference on Pervasive
Computing and Communications (PERCOM’05), pages 7–16,
Washington, DC, USA, 2005. IEEE Computer Society.

[63] Saeed Rashwand and Jelena Mišić. A novel access control
framework for secure pervasive computing. In Proceedings of
the 6th International Wireless Communications and Mobile Com-
puting Conference (IWCMC’10), pages 829–833. ACM, 2010.

[64] Jie Ren and Richard N. Taylor. A secure software architecture
description language. In Proceedings of the Workshop on Soft-
ware Security Assurance Tools, Techniques, and Metrics, held in
conjunction with the 20th IEEE/ACM International Conference
on Automated Software Engineering, 2005.

[65] Jie Ren, Richard Taylor, Paul Dourish, and David Redmiles.
Towards an architectural treatment of software security: A
connector-centric approach. In Approach, Proceedings of the
Workshop on Software Engineering for Secure Systems, held in
conjunction with the 27th International Conference on Software
Engineering, pages 1–7, 2005.

[66] Daniel Retkowitz and Sven Kulle. Dependency management
in smart homes. In Proceedings of the 9th IFIP International
Conference on Distributed Applications and Interoperable Sys-
tems (DAIS’09), 2009.

[67] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, and Klara Nahrstedt. A
middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1:74–83, 2002. ISSN 1536-1268. URL http://doi.

ieeecomputersociety.org/10.1109/MPRV.2002.1158281.

[68] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camar-
illo, Alan Johnston, Jon Peterson, Robert Sparks, Mark Han-
dley, and Eve Schooler. SIP: Session Initiation Protocol.
Technical report, RFC 3261, 2002. URL http://www.ietf.

org/rfc/rfc3261.txt.

[69] Giovanni Russello, Changyu Dong, and Naranker Dulay. Au-
thorisation and conflict resolution for hierarchical domains.

http://doi.ieeecomputersociety.org/10.1109/MPRV.2002.1158281
http://doi.ieeecomputersociety.org/10.1109/MPRV.2002.1158281
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

98 bibliography

In Proceedings of the 8th International Workshop on Policies for
Distributed Systems and Networks (POLICY’07), pages 201–
210, 2007.

[70] Jerome H. Saltzer and Michael D. Schroeder. The protection
of information in computer systems, 1975.

[71] Geetanjali Sampemane. Access Control For Active Spaces. PhD
thesis, University of Illinois, 2005.

[72] Geetanjali Sampemane, Prasad Naldurg, and Roy H. Camp-
bell. Access control for active spaces. In Proceedings of
the 18th Annual Computer Security Applications Conference
(ASAC’02), pages 343–352, 2002. doi: 10.1109/CSAC.2002.
1176306.

[73] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control models.
Computer, 29(2):38–47, 1996. ISSN 0018-9162. URL http:

//dx.doi.org/10.1109/2.485845.

[74] Mahadev Satyanarayanan. Pervasive computing: Vision
and challenges. IEEE Personal Communications, pages 10–18,
August 2001.

[75] Estefanía Serral, Pedro Valderas, and Vicente Pelechano.
Towards the model driven development of context-aware
pervasive systems. Pervasive and Mobile Computing, 6:254–
280, April 2010. ISSN 1574-1192. URL http://dx.doi.org/

10.1016/j.pmcj.2009.07.006.

[76] Nigel Shadbolt. Ambient intelligence. IEEE Intelligent Sys-
tems, 18(4):2–3, 2003. ISSN 1541-1672.

[77] Jeffrey S. Shell. Taking control of the panopticon: Privacy
considerations in the design of attentive user interfaces. Pre-
sented at CSCW 2002 Workshop Privacy in Digital Environ-
ments: Empowering Users, 2002.

[78] Choonsung Shin, Anind K. Dey, and Woontack Woo. Mixed-
initiative conflict resolution for context-aware applications.
In Proceedings of the 12th International Conference on Ubiqui-
tous Computing (UbiComp’08), pages 262–271, 2008.

[79] Morris Sloman and Emil C. Lupu. Engineering policy-based
ubiquitous systems. The Computer Journal, 53(7):1113–1127,
2010. doi: 10.1093/comjnl/bxp102. URL http://comjnl.

oxfordjournals.org/content/53/7/1113.abstract.

[80] João Pedro Sousa and David Garlan. Aura: an architec-
tural framework for user mobility in ubiquitous computing
environments. In Proceedings of the 3rd Working Conference

http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1016/j.pmcj.2009.07.006
http://dx.doi.org/10.1016/j.pmcj.2009.07.006
http://comjnl.oxfordjournals.org/content/53/7/1113.abstract
http://comjnl.oxfordjournals.org/content/53/7/1113.abstract

bibliography 99

on Software Architecture, pages 29–43, Deventer, The Nether-
lands, The Netherlands, 2002. Kluwer, B.V. ISBN 1-4020-
7176-0.

[81] Vince Stanford. Using pervasive computing to deliver elder
care. Pervasive Computing, IEEE, 1(1):10 – 13, 2002. ISSN
1536-1268. doi: 10.1109/MPRV.2002.993139.

[82] Christopher Steel, Ramesh Nagappan, and Ray Lai. Core
Security Patterns: Best Practices and Strategies for J2EE(TM),
Web Services, and Identity Management. Prentice Hall, 2007.

[83] Sun Microsystems. Entreprise Java Beans specification,
2007. URL http://jcp.org/aboutJava/communityprocess/

final/jsr220/index.html.

[84] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stan-
ley M. Sutton. N degrees of separation: multi-dimensional
separation of concerns. In ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, pages 107–119,
1999. ISBN 1-58113-074-0.

[85] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy.
Software Architecture: Foundations, Theory, and Practices.
Addison-Wesley, 2010.

[86] William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-
Phil Hong. Access control in collaborative systems. ACM
Computing Surveys, 37:29–41, 2005.

[87] Verena Tuttlies, Gregor Schiele, and Christian Becker.
COMITY - conflict avoidance in pervasive computing envi-
ronments. In Proceedings of the 2nd International Workshop on
Pervasive Systems (PerSys’07), pages 332–345, 2007.

[88] Mark Weiser. The computer for the twenty-first cen-
tury. In Scientific American, volume 265, pages 94–
104, 1991. URL http://www.ubiq.com/hypertext/weiser/

SciAmDraft3.html.

[89] Mark Weiser and John Seely Brown. The coming age of calm
technolgy, pages 75–85. Copernicus, New York, NY, USA,
1997. ISBN 0-38794932-1. URL http://portal.acm.org/

citation.cfm?id=504928.504934.

[90] Mark Weiser, Rich Gold, and John Seely Brown. The origins
of ubiquitous computing research at parc in the late 1980s.
IBM Syst. J., 38:693–696, 1999. ISSN 0018-8670. URL http:

//dx.doi.org/10.1147/sj.384.0693.

[91] Wikipedia, 2011. URL http://en.wikipedia.org/wiki/

Aspect_oriented_programming.

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://portal.acm.org/citation.cfm?id=504928.504934
http://portal.acm.org/citation.cfm?id=504928.504934
http://dx.doi.org/10.1147/sj.384.0693
http://dx.doi.org/10.1147/sj.384.0693
http://en.wikipedia.org/wiki/Aspect_oriented_programming
http://en.wikipedia.org/wiki/Aspect_oriented_programming

100 bibliography

[92] Raj Yavatkar, Dimitrios Pendarakis, and Roch Guerin. Frame-
work for policy-based admission control. Technical report,
RFC 2753, 2000. URL http://www.ietf.org/rfc/rfc2753.

txt.

[93] Feng Zhu, Matt W. Mutka, and Lionel M. Ni. Service discov-
ery in pervasive computing environments. IEEE Pervasive
Computing, 4:81–90, 2005. doi: 10.1109/MPRV.2005.87.

http://www.ietf.org/rfc/rfc2753.txt
http://www.ietf.org/rfc/rfc2753.txt

Part V

A P P E N D I C E S

A
D I A S P E C C O D E S A M P L E S

1 /* Description of the available entities. */

2 device LocatedDevice {

3 attribute location as Location;

4 }

5 device Alarm extends LocatedDevice {

6 action OnOff;

7 }

8 device BreakDetector extends LocatedDevice {

9 source broken as Boolean;

10 }

11 device Camera extends LocatedDevice {

12 source presence as Boolean;

13 source picture as JPEG;

14 action Move;

15 action Track;

16 }

17 device Door extends LocatedDevice {

18 source status as DoorStatus;

19 action LockUnlock;

20 }

21 device Keypad extends LocatedDevice {

22 source status as HomeStatus;

23 }

24 device Logger {

25 action Log;

26 }

27 device Messenger {

28 action Send;

29 }

30 device SmokeSensor extends LocatedDevice {

31 source smoke as Float;

32 }

33 device Sprinkler extends LocatedDevice {

34 action OnOff;

35 }

36 device TemperaturSensor extends LocatedDevice {

37 source temperature as Float;

38 }

39 /* Description of the supported actions. */

40 action LockUnlock {

41 lock();

42 unlock();

43 }

44 action Log {

45 logEvent(event as String);

46 }

47 action Move {

48 role(degree as Integer);

49 pitch(degree as Integer);

50 yaw(degree as Integer);

103

104 bibliography

51 }

52 action OnOff {

53 on();

54 off();

55 }

56 action Send {

57 send(message as String);

58 send(picture as JPEG);

59 }

60 action Track {

61 trackPresence();

62 }

63 /* Enumerations and data types. */

64 enumeration DoorStatus {

65 LOCKED, UNLOCKED, OPEN

66 }

67 enumeration HomeStatus {

68 SECURED, UNSECURED

69 }

70 structure Location {

71 location as String;

72 }

73 structure JPEG {

74 name as String;

75 content as Binary;

76 }

Listing 13: Taxonomy of the emergency application

1 /* Context components. */

2 context AvgTemp as Float indexed by location as Location {

3 source temperature from TemperatureSensor;

4 }

5 context DoorStatus as Boolean indexed by location as Location {

6 source status from Door;

7 }

8 context Fire as Boolean indexed by location as Location {

9 context AvgTemp;

10 context SmokeDetected;

11 }

12 context Intrusion as Boolean indexed by location as Location {

13 context Occupancy;

14 source broken from BreakDetector;

15 }

16 context Occupancy as Boolean indexed by location as Location {

17 source presence from Camera;

18 source status from Keypad;

19 }

20 context SmokeDetected as Boolean indexed by location as Location {

21 source smoke from SmokeSensor;

22 }

23 context Surveillance as JPEG indexed by location as Location {

24 source picture from Camera;

25 }

26 /* Controller components. */

27 controller FireCtrl {

28 context DoorStatus;

29 context Fire;

bibliography 105

30 action LockUnlock on Door;

31 action Log on Logger;

32 action OnOff on Alarm, Sprinkler;

33 }

34 controller IntrusionCtrl {

35 context Intrusion;

36 context Surveillance;

37 action LockUnlock on Door;

38 action Log on Logger;

39 action OnOff on Alarm;

40 action Send on Messenger;

41 action Track on Camera;

42 }

Listing 14: The emergency application

B
J AVA C O D E S A M P L E S

1 public class CertificateHelper {

2 public Certificate certificate;

3 public String owner;

4 private String keystorePath;

5 private char[] keyPass;

6 private char[] trustPass;

7

8 /** Constructor. */

9 public CertificateHelper(ServiceConfiguration config) {

10 this.owner = config.getOwner();

11 this.keystorePath = config.getKeystorePath();

12 this.keyPass = config.getKeyStorePassword();

13 this.trustPass = config.getTrustStorePassword();

14 this.certificate = this.getCertificateFromKeystore(owner);

15 }

16

17 /** Checks if local trust store contains certificate of <alias>.

*/

18 public boolean containsCertificate(String alias) { ... }

19

20 /** Returns the local certificate. */

21 public Certificate getCertificate() {

22 return this.certificate;

23 }

24

25 /** Returns certificate of <alias> from the local key store. */

26 public Certificate getCertificateFromKeystore(String alias) {...}

27

28 /** Returns certificate of <alias> from the local trust store. */

29 public Certificate getCertificate(String alias) {

30 KeyStore ks;

31 try {

32 ks = this.getTruststore();

33 return ks.getCertificate(alias);

34 } catch (Exception e) {

35 DiaLog.error(" −− Couldn’ t retrieve cert i f icate " + alias +

" from the trust store . ");
36 e.printStackTrace();

37 }

38 return null;

39 }

40

41 /** Stores a given certificate under the given alias in the

local trust store. */

42 public void storeCertificate(String alias, Certificate cert) {

43 KeyStore ks;

44 try {

45 ks = this.getTruststore();

46 if (ks.isCertificateEntry(alias)) {

107

108 bibliography

47 DiaLog.info(" −− " + alias + " ’ s Certificate is already in
the trust store . ");

48 } else {

49 ks.setCertificateEntry(alias, cert);

50 FileOutputStream fos;

51 fos = new FileOutputStream(keystorePath + owner +

"Trust . jks ");
52 ks.store(fos, this.trustPass);

53 fos.close();

54 DiaLog.info(" −− Stored " + alias + " ’ s cert i f icate into "
+ owner + " ’ s trust store . ");

55 }

56 } catch (Exception e) {

57 e.printStackTrace();

58 }

59 }

60

61 /** Compares a received certificate to the local certificate. */

62 public boolean verify(String alias, Certificate cert) { ... }

63

64 /** Returns the local key-store. */

65 private KeyStore getKeystore() {

66 try {

67 KeyStore ks = KeyStore.getInstance("JKS");
68 ks.load(null, this.keyPass);

69 FileInputStream fis = new FileInputStream(keystorePath +

owner + " . jks ");
70 ks.load(fis, this.keyPass);

71 fis.close();

72 return ks;

73 } catch (Exception e) {

74 e.printStackTrace();

75 }

76 return null;

77 }

78

79 /** Returns the local trust store. */

80 private KeyStore getTruststore() { ... }

81 }

Listing 15: The CertificateHelper class that manages certificates in
trust and key stores.

	Dedication
	Acknowledgments
	Résumé
	Abstract
	Résumé Étendu
	Liste des publications
	Contents
	List of Figures
	Listings
	1 Introduction
	1.1 Approach
	1.2 Thesis Contributions
	1.3 Roadmap

	Context
	2 Background
	2.1 Home Automation Systems
	2.2 Challenges in Home Automation Systems
	2.3 Domain-specific Security Requirements
	2.4 Developing Functional Requirements
	2.5 Security Concerns in Application Development
	2.6 Summary

	3 Problem Statement
	4 DiaSpec
	4.1 The Sense-Compute-Control (SCC) Pattern
	4.2 Describing the Environment
	4.3 Designing the Application
	4.4 Implementing the Application
	4.5 Summary

	Access Control
	5 Resource Conflict Handling
	5.1 Delimiting Resource Conflicts
	5.2 Conflict Management
	5.3 Implementation
	5.4 Summary

	6 Evaluation

	Privacy
	7 Integration of Security Mechanisms
	7.1 Background
	7.2 Improving Privacy
	7.3 The DiaAspect Language
	7.4 Implementation
	7.5 Summary

	8 Evaluation

	Results
	9 Conclusion
	10 Future Work
	Bibliography

	Appendices
	A DiaSpec code samples
	B Java Code Samples

