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Seeking for RelevantDescriptors andClassification for Content Based
Image Retrieval

Abstract: The explosive development of affordable, high quality image acquisition devices
has made available a tremendous amount of digital content. Large industrial companies are
in need of efficient methods to exploit this content and transform it into valuable knowl-
edge. This PhD has been accomplished in the context of the X-MEDIA project, a large Eu-
ropean project with two major industrial partners, FIAT for the automotive industry and
Rolls-Royce plc. for the aircraft industry. The project has been the trigger for research linked
with strong industrial requirements. Although those user requirements can be very specific,
they covered more generic research topics. Hence, we bring several contributions in the
general context of Content-Based Image Retrieval (CBIR), Indexing and Classification.

In the first part of the manuscript we propose contributions based on the extraction of
global image descriptors. We rely on well known descriptors from the literature to propose
models for the indexing of image databases, and the approximation of a user defined cat-
egorisation. Additionally, we propose a new descriptor for a CBIR system which has to
process a very specific image modality, for which traditional descriptors are irrelevant. In
the second part of the manuscript, we focus on the task of image classification. Industrial
requirements on this topic go beyond the task of global image classification. We developed
two methods to localize and classify the local content of images, i.e. image regions, using
supervised machine learning algorithms (Support Vector Machines). In the last part of the
manuscript, we propose a model for Content-Based Image Retrieval based on the construc-
tion of a visual dictionary of image regions. We extensively experiment the model in order
to identify the most influential parameters in the retrieval efficiency.
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Chapter 1
Introduction

Figure 1.1: A horse from Lascaux caves. Replica in the Brno museum Anthropos. Extracted
fromWikimedia Commons.

« One picture is worth more than ten thousand words. »

It is not a surprise that this quote is the very first sentence in the book by Gonzales and
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Woods, Digital Image Processing [66]. Images, pictures and drawings have been used by indi-
viduals to express ideas, feelings or to transmit heritage even before formal written language
(figure 1.1). The democratization of affordable, high quality acquisition devices (cameras,
phones, scanners) and the drastic reduction of memory and storage cost have changed our
traditional connection with multimedia information. In companies, the amount of data pro-
duced has dramatically increased. These data need to be interpreted and retrieved. While
in the past, medium size, mainly textual, centralized archives used to be the only sources
for knowledge management, nowadays large companies handle large quantities of multi-
media information in distributed archives. Intranets in large enterprises have reached the
dimension of mini Webs. The increased use of the World Wide Web as a source of informa-
tion narrows down the boundary between intra and inter-net. This dramatically increases
the dimension of the information space. Nowadays, the information is distributed across
different media and sources of visual information such as images available in digital form
are unavoidable: they allow fast visual apprehension of phenomena, which are described,
or not, in accompanying texts and annotations.

1.1 The context of the work

1.1.1 X-MEDIA project

This PhD has been accomplished in the context of the X-MEDIA1 project. X-MEDIA ad-
dresses the issue of knowledge management in complex distributed environments. Its goal
is to study, develop and implement large scale methodologies and techniques for knowledge
management able to support sharing and reuse of knowledge that is distributed in different
media (images, documents and data) and repositories (data bases, knowledge bases, docu-
ment repositories, etc.).

During the time period of the X-MEDIA project, we have experienced close collaboration
with industrial partners coming from different backgrounds and having different require-
ments. The research problems that have been tackled in this PhD are initially driven by the
industrial requirements defined during the project. The industrial partners were Rolls Royce
plc. (RR) for the aeronautic industry, and Centro di Richercha FIAT (CRF) for the car indus-
try. In such large organizations, several departments are potentially interested in the results
of a research project such as X-MEDIA. The requirements from the industrial point of view
have been gathered into four use cases (two for RR and two for CRF). Three of these use
cases contained image related material. We report these use cases in the following sections.

1.1.1.1 Competitor Scenaria Forecast - (CRF use case)

Scenario description Competitor analysis represents a key success factor for every kind
of organization. This particular activity should provide a constant monitoring of the exis-
tent competitors’ products, particularly analyzing technological innovations and solutions.
Considering car manufacturing environment, it is vital to understand market trends and

1http://www.x-media-project.org/
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fashions, in order to follow the flow or, even better, trying to anticipate customer needs pro-
viding smart and usable new solutions.

Competitor analysis has the goal to monitor the market and its voices or rumors, to be
daily informed of its evolution, specifically concerning:

• Trends, e.g. evolution of shapes of products or parts

• New products: concepts, prototypes, new productions

• New components

• New materials that become available or are adopted for specific products

This daily activity is done keeping in mind the final goals:

• Cost reduction

• Weights reduction

• Performances

• Comfort (usability, driver, acoustic, vibration)

• Low fuel consumption

• Reliability

• Innovation (style,. . . )

• Safety

• Mobility enhancement

In FIAT Auto, there are many different kinds of activities connected with Competitors
Analysis. FIAT has a Competitor Analysis (CA) department that leads two main data acqui-
sition processes:

1. In-house testing and or dismantling of competitors’ cars (synchronous process): this
process consists in purchasing, renting or exchanging with competitors’ cars in order
to carry out performance testings, components measurements, photo shooting and car
dismantling (if the car is purchased).

2. Collecting any kind of world-wide information related to competitors (asynchronous
process): this includes information extraction from competitors’ press release, web
monitoring and screening from a predefined list of reliable websites, and information
extraction from specialized magazines.
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Concerning the most time and cost consuming activity (car dismantling), CA depart-
ment processes on average 5 competitors’ cars per year. The dismantling process consists
of a really articulated activity that reduces the car into all its components, until the individ-
ual component (e.g. screw). Moreover 15 to 20 competitors’ cars are rented and tested every
year. Considering all the aforementioned activities, CA department creates andmakes avail-
able a considerable amount of data. Nowadays they have to manage a growing rate of 15
GB/per year. All these data and the outputs produced analyzing them (daily reports) are
stored in a unique central database where each information is classified with a unique key,
car manufacturer, car model and car version. Other information is organized in folders,
mainly stored in the company Document Management Systems and classified only by car
name. Other data may reside in the local repository managed by each department collecting
and producing it. More than 200 users from different FIAT departments take advantage of
the data collected by the competitor analysis department, many of them also contribute in
collecting and producing data.

Industrial Requirements The synchronous and asynchronous processes produces a large
amount of image material, coming from the Internet (news, articles, reports) or from photos
taken directly during the dismantling process. Currently, there exists no system to properly
store and retrieve images in ameaningful way. In the best case, the images collected from au-
tomotive websites are saved in a shared folder named after the car model name. Following
the fact that even such a simplistic approach of image storing is time consuming, it has been
identified as a potential breakthrough to be able to recognize and automatically classify im-
ages according to some meta-data, such as the car view (interior/exterior), car components
(e.g. air ducts, gear lever, steering wheel, . . . ), brand, model.

1.1.1.2 Issue Resolution - (RR use case)

Scenario description During the product development phase of an engine program it is
essential that every opportunity is taken to identify potential shortfalls in the products capa-
bility and ensure effective resolution prior to entry into service. The issues identified on one
product are also a valuable source of lessons for the design phase of subsequent products
and the operational phase of other existing products. The sources of knowledge information
on the issue, the root cause understanding and the problem solution may all be represented
in a variety of media (photographic, video, text, graphical). In many instances the process of
investigation and solution will require the involvement of multiple organizations. Follow-
ing entry into service, additional issues (and investigations) will continue to occur. These
too require effective problem management and may identify weaknesses in the original de-
velopment process (where issues were not identified prior to service operation). In order to
progress from an issue to resolution, it is necessary for the team working on the problem
to work in data, information and knowledge levels. As they progress the problem, there
comes a need to communicate progress out to the other stakeholders in the issue. These may
include the engine project, customer interfaces and the customers themselves. These com-
munications generally need to be at an informational level (where are we, when will it be
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closed, what do I need to do) and in some cases knowledge (what are the implications of this
issue, what could it lead to, where does it sit in priority terms compared to other issues). In
parallel with the progression of the basic issue and after its completion, the problem, its un-
derstanding, its root cause and validation strategy provide a valuable knowledge resource
for other existing engine types and future product design. The root cause can cover both the
problem root cause and, if applicable, the root cause for it failing to have been identified and
resolved earlier in the design process.

Industrial Requirements Finding the root cause of an engine failure is a long, time con-
suming process that requires the conjoint work of several people or groups of people. Dur-
ing this process, several sources of information are investigated and evidence is collected
and shared among the people in the organisation across different media: emails with at-
tachments, multimedia documents (presentations), photos, technical reports or engine test
reports (raw data). The X-MEDIA system has been foreseen as a potential breakthrough
within this process, by providing a uniform and coherent way to create, store, retrieve and
share knowledge across users, time and space. As far as the requirements for image analysis
are concerned, a desirable feature from the industrial point of view would be the ability to
recognize potential defects or defects causes from the engine pictures.

1.1.1.3 Experimental Vibration - (RR use case)

Scenario description Every component or structure has a series of natural frequencies and
associated mode-shapes. If the structure is excited at the same frequency as the natural fre-
quency, then the structure will resonate with a response many times greater than if excited
at a non-natural frequency. Gas turbines like many other lightweight high performance
structures have to be carefully designed to ensure the resonance of the structure does not
cause loss of structural integrity. This failure mechanism is known as high cycle fatigue. To
complete this engineering task, it is important to understand the mode-shape of the compo-
nent (image), the type of test that the component has been subject to (test schedule and test
log text documents) and the vibration characteristics seen in the measured data (data and
image). We must also understand the maximum response seen in the engine and the maxi-
mum safe running amplitude to ensure we do not see failures in service. A theoretical finite
element model is often required to get all this information together in a coherent manner.
There are many different components within a gas turbine and many different instrumen-
tation techniques that can be used to measure the vibration characteristics of a component.
The Experimental Vibration (EV) department forms part of the Operations, Engineering and
Technology business. The department is primarily a service function to both military and
civil aerospace, although does complete work for marine and other parts of the Rolls-Royce
business. The department has approximately 40 staff. They can be broken into Project Vibra-
tion Engineers and laboratory Technologists. The Project Vibration Engineers are located on
Bristol and Derby. They routinely define and interpret engine and laboratory experiments
to understand the vibration characteristics of key components. The data is used to make
safety decisions and directly used in the certification of an engine type. This work is mainly
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in support of new products, although some work is to understand change in manufacturing
process or product improvement. The department has its own laboratory (located in Derby)
that routinely tests engine components, often to destruction. The department also has very
close links with the engine test organisation that is responsible for completing the whole
engine experiments. Rolls-Royce is a global organisation and these engine tests can be per-
formed in many different parts of the world, ranging from Europe (e.g. England, Spain), to
the United States of America (e.g. Florida, Indiana), across to the Far East (e.g. Japan).

Industrial Requirements Rolls-Royce engineers have considerable knowledge and exper-
tise in the field of vibration understanding. This is based on the 50+ years of testing gas
turbines. However this knowledge takes considerable time to accumulate for a new Vibra-
tion Engineer. It is intended that the X-MEDIA Experimental Vibration Use Case will present
historical knowledge to novice graduate engineers, enabling them to act with the authority
of engineers who have in excess of 15 years experience, i.e. those with experience of 3 or 4
engine design cycles. Such a system would rely extensively on image modality: images pro-
duced by the new engine tests are confronted to historical data, i.e. images from previous
tests. The expert could browse historical knowledge using images, and infer from previous
cases the reliability of the newly tested engine components.

1.1.2 Research context

The formal introduction of image processing and analysis algorithms in industrial environ-
ment was in the development of very specific, control oriented or quality oriented applica-
tions such as the automated visual inspection of manufactured goods [65]. The emergence of
new imaging facilities, easiness of creating image content and the access to external sources
have triggered new challenges for the management of image data in industrial environment.
The industrial requirements defined in the previous section can be expressed in terms of well
know topics in the research community, namely Content Based Image Retrieval (CBIR) and
Image Classification.

CBIR has been an extensively studied topic in the last 20 years [153]. Yet, the research
in this field is still growing with the emergence of new needs due to the democratization of
digital content creation. Nowadays, CBIR systems are growing into much broader systems
that trigger the association of researchers from weakly related fields. The paper from Datta
et al. [40] presents a survey of almost 300 key theoretical and empirical contributions in the
current decade related to image retrieval and automatic image annotation The goal of CBIR
is to perform efficient retrieval on — possibly large scale —, image data-sets based on the
image content. In the case of industrial domains, images can come from highly heteroge-
neous environments. In this context, the adequate descriptor of image content is of primary
importance. This is a key-point in general CBIR research, as illustrated by Datta et al. in
figure 1.2.

One of the difficulties of the formulation of an appropriate image signature is defined as
the semantic gap:
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Figure 1.2: Overview of image signature formulation. Image from [40], c©ACM

« The semantic gap is the lack of coincidence between the information that one can extract

from the visual data and the interpretation that the same data have for a user in a given

situation [153]. »

The goal of image classification is to train a classifier to be able to recognize a particular
object or object class. The topic of image classification is linked with both machine learning
and CBIR. Image classification relies intensively on machine learning algorithms as classi-
fiers. Like CBIR, image classification needs an adequate description of the image content,
i.e. an adequate signature, which is fed to the classifiers. Intuitively, image classification
and CBIR are linked by the concept of similarity in the description space. Moreover, CBIR
systems can make use of image classification to provide keyword or category based entry to
image retrieval.

The relationships between the industrial requirements gathered in the X-MEDIA use
cases and the broader research topics of CBIR and image classification are the following:

• Competitor Scenario Forecast Use Case (CSF): the task of recognizing car views or
car components is a typical image classification task. One of the challenging aspects of
this task to handle a multi-class detection and localisation of components, as several
car components can be present in an image.

• Issue Resolution Use Case (IR): the task of recognizing defects from image is also an
image classification task. However, after intensive discussionwith the use case owners,
it is clear that the recognition of defects not only relies on purely visual inspection
of the components, but on the background expertise of skilled engineers. Methods
employing evidences gathered across the different media, with a strong emphasize on
text should be employed and are beyond the scope of this work. Nevertheless, CBIR
can be useful in this scenario for the defects that can be identified by a specific visual
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Figure 1.3: Challenges for image management in large industrial environments

appearances (e.g. burns, leaks, . . . ). The system could retrieve similar pictures, which
are linked with the history of investigation of the engine failure cause. Ideally, such a
system should allow to perform local queries, i.e. queries using just a part of the image
where the defect is identified by an expert.

• Experimental Vibration Use Case (EV): The image requirements for this use case are
a crucial step toward narrowing the gap between novice and experienced engineers. It
is expected that the images collected during the vibration testing can be used to access
historical data, i.e. the history of tests of all the components that have been previously
processed, in order to quickly identify the reliability of the newly tested components.
This is a typical CBIR task, where the X-MEDIA system keep the links between the
image data and the textual and data reports.

An additional implicit requirement from the industrial partners is the need for struc-
turing the visual data. At the moment, their best practice in terms of image management
consists in a manual categorization of images into folders. Automatic structuring of image
databases based on visual features, e.g. for image browsing, is a desirable feature. The
challenges for image management in large industrial companies are illustrated in figure 1.3.
Companies gather image content from very heterogeneous sources such as the web, internal
documents or their own acquisition devices. All these sources fill a huge image repository,
on top of which research applications can be built. This includes, but does not limit to, CBIR,
classification and structuring of the image database.

1.2 Structure of the manuscript

The X-MEDIA project has been a powerful opportunity to investigate the benefits of image
management process within the context of large industrial environments. From the image
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analysis point of view, the requirements from the industrial partners are challenging and
diverse. From the industrial point of view, discussing the requirements was also a good
opportunity to see the benefits of more powerful image management systems. Hence, we
identified that an efficient management of visual data in large organization should rely on
a collection of tools for the organization, classification, indexing and retrieval schemes for
image databases. All such aspects have been covered in this work.

The chapter 2 is an introduction to several concepts that have been used throughout
this work. The core of general research in CBIR and image classification is the adequate
description of the image content. We start chapter 2 by reviewing the state-of-the-art in low
level feature extraction and matching. We continue this chapter by introducing the concept
of data clustering a key notion referred throughout this manuscript. Finally, we present the
metrics for the evaluation of the performances of CBIR and classification systems.

The organisation of the next chapters follows a progression in our work concerning the
level of granularity we have been working on at the image level. In chapter 3, we focus
on systems which operates at the full image level, i.e. using global image descriptors. The
chapter is divided in three sections. In section 3.1, we propose a system for the indexing of
images based on multiple clustering. Rather that responding to a specific X-MEDIA use case
requirement, this system is a generic solution for a flexible indexing mechanism. In section
3.3, we present a CBIR system that was designed having in mind the specific requirements of
the RR Experimental Vibration use case. In this use case, the nature of the images processed
makes CBIR systems relying on traditional low level features useless. We propose an alter-
native feature representation based on the Radon Transform and an appropriate similarity
measure in this feature space. In section 3.2, we propose an algorithm that finds the best ap-
proximation of a user-defined categorization, based on low level descriptors. The proposed
approach is based on solving the well know assignment problem.

Chapter 4 narrows down the analysis of the image content to local content. We adopted
two approaches for this task. In section 4.3, we propose a two-stage object detection and lo-
calisation schema. The localization of objects is first achieved using an algorithm for Regions
Of Interest (regions-of-interest) detection. Then candidate regions-of-interest are submitted
to a classifier build to recognize particular object classes. In section 4.4, a different approach
is adopted. In this section, we propose a multi-class object detection and localization al-
gorithm which operates on segmented regions of the image. Using image segmentation as
a pre-processing step, the whole image is processed but each region is classified indepen-
dently which enables the localisation of different objects, or different instances of the same
object class.

In chapter 5, we propose a CBIR system relying on an hybrid local and global charac-
terization of the image content. In this work, we are among the rare representatives of the
research community using region-based features in the now popular Bag-Of-Words (BoW)
approach. We present the Bag-of-Regions(BoR) framework and demonstrate its efficiency
for both global and localized CBIR.

Finally, we conclude this manuscript in chapter 6, by drawing the strength and weak-
nesses of our approaches and proposing openings for future works.
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Chapter 2

State of the art in image content
description

2.1 Introduction

In this chapter, we introduce the basic elements that we use throughout this manuscript. As
a fundamental step, the extraction of features is the process of computing, from the image, a
descriptor which is representative of the image content. In section 2.2, we review the state of
the art of visual features in terms of color, texture, shape and the most recent keypoint-based
features.

Once the image content is expressed in terms of visual features, the matching between
the features is usually achieved using some standard similarity or distance measure. They
are introduced in section 2.5.

In section 2.4 we introduce the notion of data clustering and present some algorithms
that are used throughout this manuscript.

Finally, we describe in section 2.5 the standard methodology and metrics for the evalua-
tion of classification and retrieval systems.

2.2 Visual Features

Since the emergence of computer imaging, the researchers have always been interested in
finding an accurate description of the content of images. However, as pointed out by Smeul-
ders et al. [153], one of the main difficulties of such a task relies on the semantic gap: Visual
features are useful for Content-Based Image Retrieval (CBIR) applications, image classifica-
tion but also for extracting the objects that compose an image. The large range of applications
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of visual features combined with the problems of semantic gap have led the way to the de-
velopment of a lot of different visual features. We can consider four different types of visual
features:

1. Color features

2. Texture features

3. Shape features

4. Local (or keypoint-based) features

In this section, we review some of the literature about visual feature extraction, with a
special focus on the MPEG-7 standard. The MPEG-7 standard defines a set of nine visual de-
scriptors for 2D image representation. Although MPEG-7 has never become a wide-spread
standard for content description, the results of the fundamental work for content descriptors
has become widely used for content based indexing and retrieval. Most of our approaches
have been based on the descriptors from the MPEG-7 standard.

2.2.1 Colour features

2.2.1.1 Preliminaries: Colour spaces

Before going further in the description of colour features it is necessary to remind the notion
of colour spaces. A colour space is a mathematical model that enables the representation
of colors, usually as a tuple of color components. There exists several such models, some
motivated by the application background, some by the perceptual background of the human
vision system.

The most commonly used color space is the RGB space, where a color is defined by the
additive amount of the primary colorsRed,Green and Blue. The design of this color space is
closely related to the way the colors are reproduced on hardware devices such as computer
screens, television, etc. A classic representation of the RGB color space is the 3-dimensional
cube, where each axis correspond to the amount or red, green and blue components (figure
2.1(a)).

TheHSV (forHue, Saturation,Value) color space was designed in an attempt to describe
the perceptual color relationships more accurately than RGB, while remaining simple. It
is defined by a unique, non-linear mapping from the RGB space. The colors in HSV are
traditionally represented in a 3D-cone (figure 2.1(b)). The hue takes values from 0 to 360

representing the color wheel. The saturation represented by the distance from the center of
a circular cross-section of the cone, corresponds to the purity of the color (pure red, green,
yellow, . . . ). The value component corresponds to the brightness/darkness of the color. It is
located on the color cone as the distance from the pointed end of the cone. Saturation and
Value usually take values in the interval [0, 1].

TheHMMD (Hue-Max-Min-Difference) Color space is yet another color space obtained
from a non-liner transformation of the RGB color space. It is defined by the MPEG-7 stan-
dard as beeing closer to a perceptually uniform color space. Hue as the same semantics as in
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theHSV color space. Max, which is the max over the RGB values, specifies howmuch black
color is present. Min (min of RGB component) specifies how much white color is present.
Diff (Max - Min) specifies how much a color is close to pure colors. Sum ((Max + Min)/2)
specifies the brightness of the color. Although 5 components can be extracted, {Hue, Max,
Min} or {Hue, Diff, Sum} are sufficient to specify any color point in this color space.

The emergence of the color in television has motivated the usage of color spaces that sep-
arate the pixel luminance (brightness) and chrominance (color) values, such as YUV (figure
2.1(d)). Such a definition of the color enabled the cohabitation of black and white and color
for analog television. YUV is also the standard in video encoding, since the chrominance
component can be encoded using a reduced bandwidth without loss of perceptual quality.

Finally, some efforts have been made in order to build color spaces that attempt percep-
tual uniformity. One such color space is Luv (figure 2.1(e)). Luv was designed so that the
perceptual color difference can be computed in the Luv space using the euclidean distance.

(a) RGB (b) HSV (c) HMMD (d) YUV (e) Luv

Figure 2.1: Graphical representation of different color spaces. Figures created with Color
Inspector 3D plugin for ImageJ.

(a) Original Im-
age

(b) RGB (c) HSV (d) HMMD (e) YUV (f) YUV

Figure 2.2: Color histogram of the baboon image in different color spaces. Figures created
with Color Inspector 3D plugin for ImageJ.

2.2.1.2 Colour descriptors

Human visual perception mostly relies on colour information. Colour descriptors aim some-
how at simulating this ability by describing and discriminating images through a set of ac-
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curate colorimetric properties. Such description tools are rather effective, easy to extract and
meaningful. Most of them require the use of a particular colour space to be fully efficient.

Histogram The most common way to represent the distribution of colours (or gray level)
in an image (or an image region) is the histogram. The histogram of an image is a discrete
function (cf equation 2.1) that associates a color with its frequency in the image. Histograms
are usually computed using a quantization of the color space: a histogram bin counts the
number of pixels falling into its range of gray level or color values. The quantization can be
linear (a bin represents a fixed number of values) or non-linear. The quantization steps can
be different on each color component (for example, it is wise to use a bigger number of bins
for the Luminance component of color spaces such as YUV and Luv). If we note N the total
number of observations (e.g. the number of pixels in an image or a region), k the number the
histogram bins, the histogramHmeets the following condition:

K
∑

i=1

H(i) = N (2.1)

Histograms are invariant under geometrical transformations(e.g. translation, rotation, . . . ).

Moments Colour moments are another tool to characterize and compare colour distribu-
tion of images. The first order moment (mean), the second-order moment (variance) and the
third order moment (skewness) have been proved to be both efficient and effective to repre-
sent the colour distribution of images [157]. The mean provides the average value of pixels
of the distribution whereas variance consists in the square root of the variance of the dis-
tribution. Skewness yields an evaluation of the asymmetry degree of the distribution. The
fourth order moment (kurtosis) is also used but merely in the context of texture analysis.
The characterization of the colour distribution of an image through its first three moments
is very compact as it contains exactly 9 values (3 moments computed for each component of
the colour) [84, 102].

Dominant Color Descriptor The Dominant Color Descriptor (DCD) [43] is the first of a
set a 8 descriptors described in the MPEG-7 standard [108] for still images. DCD provides
a compact representation of salient colors in the image or an image region. Following the
MPEG-7 notations, the DCD is defined as (equation 2.2):

DCD =
{

(ci, pi, vi), s
}

, (i = 1, 2, . . . , N) (2.2)

N is the number of dominant colors, ci is a vector of the color components values in a
particular color space, pi ∈ [0, . . . , 1],

∑

i pi = 1 is the percentage of pixels in the image
corresponding to the color ci. vi is an optional parameter describing the color variance of
the color values of the pixels with respect to their representative color. Finally, s is a single
number representing the spatial coherency of colors in the image. Up to 8 dominant colors
can be computed for an image. MPEG-7 standard defines the semantics of the descriptors
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without bounding the implementation to a particular algorithm. For DCD, the reference
implementation of MPEG-7 uses the Generalized Lloyd Algorithm [101] in the Luv color
space to compute the dominant colors. Another implementation was proposed by Yang et

al. [178]. DCD is mainly used to retrieve images with similar colours in large databases.

Scalable Color Descriptor The Scalable Color Descriptor (SCD) [14] is a 256-bin color
histogram computed on the HSV color space with 16 bins for Hue, 4 bins Saturation and 4

bins for Value component. The standard imposes HSV color space and a 256-bin histogram
to ensure interoperability. The focus for this descriptor was put in the scalability and stor-
age efficiency, while remaining accurate as a descriptor for similarity search. Scalability is
achieved by encoding the histogram using a Haar transform. The number of coefficients re-
tained and the number of bits per coefficient are the two coefficients setting up the scalability
of the descriptor. Summing adjacent bins in the histogram reduces the original histogram
size by half. The sum and difference between adjacent histogram bins are respectively equiv-
alent to a low and high pass filtering of the histogram. The matching between SCD can be
computed using the L1 distance metric (equation 2.26).

Color Structure Descriptor The Color Structure Descriptor (CSD) [112] is a modified ver-
sion of a traditional histogram which captures both the distribution of colors in the image
and the local spatial structure of the colors. CSD is defined as:

CSD = H̄s(m) m ∈ {1, . . . ,M} (2.3)

where M ∈ 256, 128, 64, 32 is the quantization step, H̄s(m) is the number of times a par-
ticular color is contained within a squared structuring element as the structuring element
scans the image and s is the scale of the associated square structuring element. CSD aims at
expressing the local structure of colours in the image through some histogram computation.
CSD can be compared using L1 metrics (equation 2.26).

Color Layout Descriptor The Color Layout Descriptor (CLD) [89] yields a compact repre-
sentation of the spatial colour distribution, in YCbCr colour space. It consists in partitioning
an image into 64 blocks (8 x 8). A representative colour is computed for each of these blocks
(e.g. average colour or dominant colour). ADiscrete Cosine Transform is then applied on this
set of 64 values. A few low frequency coefficients are then selected and quantized through
a zigzag-scanning pattern. The CLD is invariant to changes in resolution (scale) but not
invariant with respect to rotation or translation.

2.2.2 Texture Descriptors

Image information does not only rely on its colour distribution but also on the textures it con-
tains. Though no rigorous and formal definition of the term texture exists, everyone agrees
that texture information brought by an image is of great importance for its understanding
[35, 180]. One may say that a texture is generated by the quasi-periodic repetition of one



16 Chapter 2 – State of the art in image content description

Figure 2.3: Frequency region division for HTD. Image from [141].

or more local patterns over some region or image that possess some stochastic structure.
From a perceptual point of view, a texture may be defined by its coarseness, repetitiveness,
directionality and granularity.

The MPEG-7 standard defines three texture descriptors for still images.

2.2.2.1 Texture Browsing Descriptor

The Texture Browsing Descriptor (TBD) [96] captures the perceptual characterization of a
texture such as regularity, coarseness and directionality. The semantics of the descriptor is
the following:

TBD = {v1, v2, v3, v4, v5} (2.4)

• v1 ∈ {1, 2, 3, 4} represents the regularity of the texture. A value of 4 means that the
texture is highly regular.

• v2, v3 ∈ {1, . . . , 6} represents the directionality of the texture. Hence a texture may be
associate with two dominant directions.

• v4, v5 ∈ {1, . . . , 4} represents the coarseness of the texture. 1 means a fine grain texture
while 4 indicates coarse texture

The TBD is suitable for applications where a user can manually define the texture properties
that a system must retrieve. However, it is neither invariant under rotation (directionality)
nor under scaling (coarseness).

2.2.2.2 Homogeneous Texture Descriptors

The Homogeneous Texture Descriptor (HTD) [141] provides a quantitative representation
of texture using local spatial frequencies statistics. The frequency plane is partitioned ac-
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Figure 2.4: Edges orientations for MPEG-7 Edge Histogram Descriptor. Picture from [173].

Figure 2.5: Five types of edge bins for each sub-image. Picture from [173].

cording to an angular and radial sampling (figure 2.3). The semantics of the HTD is the
following:

HTD = {fDC , fSD, e1, e2, . . . , e30, d1, d2, . . . , d30} (2.5)

fDC and fSD are the first (mean) and second order (standard deviation) moments of the im-
age and the ei, di are, respectively, the mean and deviation of the energy in the frequency do-
main of the ith channel in figure 2.3. HTD should be used in the context of similarity-based
image-to-image matching because it yields a quantitative characterization of the texture.
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Figure 2.6: The MR8 filter bank consists of 2 anisotropic filters (an edge and a bar filter, at 6
orientations and 3 scales), and 2 rotationally symmetric ones (a Gaussian and a Laplacian of
Gaussian). Picture from [167]

2.2.2.3 Edge Histogram Descriptor

The Edge Histogram Descriptor (EHD) [173] encodes the distribution of edges orientations
in local areas of the image (sub-images). There are five types of edge orientations considered,
as illustrated in figure 2.4. The image is divided into 4×4 equal-size non overlapping blocks
which define the sub-images. Each sub-image is divided into a predetermined number of
image-blocks, which are non-overlapping square blocks inside the sub image. The edge
orientation is computed by applying oriented edge detectors using a 2 × 2 image-blocks
neighborhood. The edge detector with the maximum strength is identified. If none of the
edge detectors reaches a specified threshold, edge is considered as non-oriented. Hence, the
EHD is a 4 × 4 × 5 = 80-dimensional feature vector, where each dimension encodes the
distribution of a specific edge orientation within a local area of the image (figure 2.5). EHD
is particularly useful for matching regions with varying (i.e. non uniform) textures.

2.2.2.4 Bank of filters

Recent development in texture research has lead to the development of statistical approaches
to texture characterization [97, 146] using a bank of filters. The image is convolved with a
bank of filters of different scales and orientations (figure 2.6), and the texture is characterized
by the filter response distribution. A dictionary of representative texture elements, called
textons, is obtained by aggregating the filter bank responses via the K-Means clustering al-
gorithm (which will be introduced in section 2.4 page 35). The texture is hence characterized
by the filter response distribution with respect to the codebook. The distribution of texture
elements can be seen as a histogram of texture elements where the quantification of the tex-
ture space into non overlapping bins is achieved using the clustering algorithm.

2.2.2.5 Image patches

Varma and Zisserman [167] formulated a very simple yet efficient approach to material clas-
sification using image patch exemplars. They demonstrated that materials can be classi-
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Figure 2.7: Example of an image patch textons dictionary over a 7×7 neighbourhood. Picture
from [167].

fied using the joint distribution of intensity values over extremely compact neighbourhoods
(starting from 3×3) with superior performances than the filter bank approaches. Concretely,
instead of using the filter responses, one can directly use the pixels intensities of the source
image over a small N × N neighbourhood. The raw pixel intensities are reordered to form
a N2-dimensional feature vector. Then the same procedure as with filter banks applies: a
codebook of textons is obtained via clustering (figure 2.7) and the texture is characterized by
its distribution with respect to the texton dictionary.

2.2.2.6 Local Binary Patterns

Local binary patterns (LBP) are a multi-resolution gray-scale and rotation invariant texture
descriptors that was proposed by Ojala et al. for the task of texture classification [127]. A
local binary pattern LBPP,R is extracted at a given position c = x, y on a gray-scale image.
Let us note the following P -dimensional binary vector:

tP,R = {sign(I0 − Ic), sign(I1 − Ic), . . . , sign(IP−1 − Ic)} (2.6)

sign(x) =

{

1, x ≥ 0

0, x < 0
, Ic is the gray level value of image I at position c, and the

I0, I1, . . . , IP−1 are locations sampled on a circular symmetric neighbourhood of center c
and radius R. This is illustrated by figure 2.8.
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Figure 2.8: Examples of circular symmetric neighbourhood for different P ,R. Image from
[127].

t captures the texture information as the joint gray level distribution. t is invariant with
uniform changes in the luminance as it considers the signed difference between the center
and its neighbour. Discarding the amplitude of the differences and just keeping the sign of
the differences makes t invariant to the scaling of the gray-scale values. The Local Binary
Pattern is a number that characterizes the local spatial structure of the image texture defined
as:

LBPP,R =
P−1
∑

p=0

(tp)2
p (2.7)

The image texture is then characterized by the distribution of its LBP values. Ojala et al.

have experimentally shown that the vast majority of LBP patterns are uniform patterns. The
uniformity of a pattern is defined as the number of spatial transition in t, that is the number
of 0/1 changes in the pattern. It is computed as:

U(LBPP,R) =

P−2
∑

p=0

|tp − tp+1|+ |tp−1 − t0| (2.8)

Thus, they propose a rotation invariant binary pattern LBP ri as:

LBP ri
P,R =

{

∑

p=0 P − 1tp if U(LBPP,R ≤ 2)

P + 1 otherwise
(2.9)

LBP ri
P,R gives a finer quantization of the uniform patterns. Each uniform pattern is uniquely

identified. There exists P + 1 such unique uniform patterns on a circular symmetric neigh-
bourhood of P pixels. The non-uniform patterns are just put under a common label. In
the rest of the manuscript, when we refer to the local binary patterns LBP, we refer to the
definition of LBP ri

P,R.
More texture descriptors are available in the literature, but their exhaustive overview

would be long and out of the scope of this manuscript. We have focused our work in using
theMPEG-7 descriptors which, as mentioned above, have been widely accepted by the CBIR
community. To only cite one publication about the state-of-the-art, we point out the work of
Tuceryan and Jain [162].
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2.2.3 Shape Descriptors

Using shape descriptors implies being able to extract accurate shapes from an image. Shape
descriptors may be based on their contour or on the region they contain. Shape description
methods are particularly suitable for simple images, which contain one shape easily distin-
guishable from the background. Image segmentation is a usual pre-processing step before
shape description extraction. MPEG-7 provides two shape descriptors which are invariant
to scaling, rotation, and translation.

2.2.3.1 Curvature Scale Space

The Curvature Scale Space descriptor is the choice of the MPEG-7 expert group as a con-
tour shape descriptor [117]. The idea of the curvature scale space representation is that a
contour is well described by its inflection points. The CSS descriptor describes the evolution
of the set of curvature zero-crossings of a contour when it is progressively smoothed until
convexity. The semantics of the CSS descriptor is the following:

CSS = {n, c1, e1, c2, e2, h,x,y} (2.10)

n is the number of peaks in the CSS, c1, c2 are the circularity of, respectively, the original con-
tour and the smoothed contour. e1, e2 are the eccentricity of the contour and the smoothed
contour. h is the height of the highest peak, x and y are respectively the x position of a peak
on the contour and the height of the peak. CSS is invariant to geometrical transformations
of the object contour, and robust to noise.

2.2.3.2 Angular Radial Transform

The Angular Radial Transform (ART) is the Region-Based shape descriptor chosen by the
MPEG-7 standard. ART belongs to the class of moment invariants methods[79, 139]. The
descriptor uses a complex 2D Angular Radial Transform of the unit disc where the ART
coefficients are given by:

ARTnm =

∫ 2π

0

∫ 1

0
Am(θ)Rn(ρ)f(ρ, θ)ρ dρ dθ (2.11)

ARTnm are the ART coefficients of order n and m, f(ρ, θ) is an image in polar coordinates
and A and R are the ART basis functions along the angular and radial directions:















Am(θ) = 1
2πexp(jmθ)

Rn(ρ) =

{

1 if n = 0

2 cos(πnρ) if n 6= 0

(2.12)

The ART descriptor is defined as a set of normalized magnitudes of the set of ART coeffi-
cients. Twelve angular and three radial functions are used, and the coefficients are divided
by the magnitude of ART coefficient with n = 0 and m = 0. Hence the descriptor is a 35-
dimensional vector (12 × 3 − 1 because n = 0,m = 0 is constant after normalization). The
descriptor is able to describe complex objects composed of several disconnected regions.
Matching is performed with the L1 metric.
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2.2.3.3 Other shape descriptors

Simple geometrical attributes such as area (i.e. number of pixels in the region), perimeter (i.e.

the length of the region boundary), compactness (i.e. perimeter2

area ) are often used to describe
shapes [135]. Rather simple to compute, they can be gathered in attributes vector that may
be compared through the use of some distance measures. However their characterization
power is too weak to be used alone and they are often combined with more complex shape
descriptors.

Again, a vast literature on shape descriptors exists [179, 57], but falls out of the scope of
this manuscript.

2.2.4 Local descriptors

Another category of descriptors for image content are the local descriptors. Local descriptors
compute local characteristics of the image from various locations. Computing such descrip-
tors for all pixels in the image would create too much information. The local descriptors
are sampled at specific locations resulting from an interest point detector. Interest points are
local features at which the signal changes two-dimensionally. An interest point is good if it
can be unambiguously located in different views of the scene. The use of interest points has
advantages over features such as edges or regions including robustness to partial occlusion
and high informational content [147]. Local interest points usage can be traced back to the
work of Moravec [120] for stereo matching. Schmid and Mohr have been the first to pro-
pose a general image recognition scenario using local interest points [147]. The most widely
known achievement using interest points has been published by Lowe [104, 103]. Lowe pro-
posed a method for object recognition based on local scale invariant features. These scale
invariant features are known as SIFT descriptors. As this work is the most popular of the
interest point based descriptors, we will introduce it formally in this section. Similar works
inspired by SIFT include GLOH (Gradient Location and Orientation Histogram) [116], PCA-
SIFT [92] and SURF (Speeded Up Robust Features) [15]. The latter one we have mainly
used throughout this PhD will also be introduced, highlighting the differences with the SIFT
approach. A performance evaluation of local descriptors was carried by Mikolajczyk and
Schmid [116]. The following sections on SIFT and SURF descriptors are mostly citations of
the original papers [103, 15].

2.2.4.1 SIFT

SIFT features were proposed by Lowe in an attempt to provide features invariant to image
scaling, rotation and partially invariant to changes in illumination and 3D camera view-
point. Those features are well localized in both the spatial and frequency domain, reducing
the probability of disruption by occlusion, clutter, or noise. In addition, the features are
highly distinctive, which allows a single feature to be correctly matched with high probabil-
ity against a large database of features, providing a basis for object and scene recognition.
The computation of the set of SIFT image features follows four major steps:
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1. Scale-Space extrema detection: the first stage of computation searches over all scales
and image locations. It is implemented efficiently by using a difference-of-Gaussian
function to identify potential interest points that are invariant to scale and orientation.

2. Keypoint localization: at each candidate location, a detailed model is fit to determine
location and scale. Keypoints are selected based on measures of their stability.

3. Orientation assignement: one or more orientations are assigned to each keypoint lo-
cation based on local image gradient directions. All future operations are performed
on image data that has been transformed relative to the assigned orientation, scale, and
location for each feature, thereby providing invariance to these transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale in
the region around each keypoint. These are transformed into a representation that
allows for significant levels of local shape distortion and change in illumination.

Detection of Scale Space extrema The first stage of keypoint detection is to identify loca-
tions and scales that can be repeatably assigned under differing views of the same object.
Detecting locations that are invariant to scale change can be accomplished by searching for
stable features across all possible scales, using a continuous function of scale known as scale
space. Lowe proposed to use the Gaussian function as the scale-space kernel. The scale-
space of an image is defined as a function L(x, y, σ) that is produced from the convolution
of a variable-scale Gaussian G(x, y, σ) with an input image I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.13)

where ∗ is the convolution operation in x, y and σ is the scale parameter:

G(x, y, σ) =
1

2πσ2
exp−(x

2+y2)/2σ2

(2.14)

Stable keypoint locations in the scale space are extracted using scale-space extrema in the
Difference-of-Gaussian function convolved with the image, D(x, y, σ). It can be computed
from the difference of two nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ) (2.15)

It is shown that the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G [103]. Experiments showed that maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function [115].
Moreover, as illustrated in figure 2.9, the difference of Gaussian function can be computed
efficiently by simple image subtraction.

In order to detect the local maxima and minima of D(x, y, σ), each sample point is com-
pared to its eight neighbors in the current image and nine neighbors in the scale above and
below (see figure 2.10). It is selected only if it is larger or smaller than all of these neigh-
bors. The cost of this check is reasonably low due to the fact that most sample points will be
eliminated following the first few checks.
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Figure 2.9: For each octave of scale space, the initial image is repeatedly convolved with
Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian
images are subtracted to produce the difference-of-Gaussian images on the right. After each
octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated.
Image from [103]

Figure 2.10: Maxima and minima of the difference-of-Gaussian images are detected by com-
paring a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent
scales (marked with circles).Image from [103]
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Accurate keypoint localization Keypoints localized in the extrema of the scale space in the
preceeding step are fit into amodel for determining their location, scale and ratio of principal
curvatures. This step carries a filtering out of keypoints that have low contrast (and are
therefore sensitive to noise) or are poorly localized along an edge. The model for computing
the interpolated location of the maximum has been proposed by Brown and Lowe [21]. His
approach uses the Taylor expansion (up to the quadratic terms) of the scale-space function,
D(x, y, σ), shifted so that the origin is at the sample point:

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (2.16)

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is the offset
from this point. The location of the extremum x̂ is determined by taking the derivative of
this function with respect to x and setting it to zero:

x̂ = −∂
2D−1

∂x2

∂D

∂x
(2.17)

The offset x̂ is added to the location its sample point to get the interpolated estimate for the
location of the extremum. A filtering of the keypoints obtained after extrema localization
is performed in order to keep the most meaningful keypoints. The function value at the
extremum, D(x̂), is useful for rejecting unstable extrema with low contrast. Substituting
equation 2.17 into equation 2.16, we have:

D(x̂) = D +
1

2

∂DT

∂x
x̂ (2.18)

Low contrast extrema, i.e. those with a value of |D(x̂)| < K with K a threshold value
are filtered out. Finally, points located on the edges, which yields a strong response of the
Difference-of-Gaussian function might be poorly located along the edges. A poorly defined
peak in the difference-of-Gaussian function will have a large principal curvature across the
edge but a small one in the perpendicular direction. Keypoints that have a ratio between
their principal curvatures higher than a threshold are discarded. The different stages of
keypoint selection are shown in figure 2.11.

Orientation assignment Invariance to image rotation is a desirable property for the
keypoint descriptors. A consistent orientation is assigned to each keypoint based on local
image properties. The method proposed by Lowe for orientation assignment is the follow-
ing: the scale of the keypoint is used to select the Gaussian smoothed image L with the
smallest scale so that all computations are performed in a scale invariant manner. For each
image sample, L(x, y) at this scale, the gradient magnitude (equation 2.19) and orientation
(equation 2.20) is precomputed using pixel differences:

m(x, y) =
√

(L(x− 1, y)− L(x+ 1, y))2 + (L(x, y − 1)− L(x, y + 1))2 (2.19)

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(2.20)
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Figure 2.11: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original
image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-
Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and
location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d)
The final 536 keypoints that remain following an additional threshold on ratio of principal
curvatures. From [103]
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Figure 2.12: A keypoint descriptor is created by first computing the gradient magnitude and
orientation at each image sample point in a region around the keypoint location, as shown
on the left. These are weighted by a Gaussian window, indicated by the overlaid circle.
These samples are then accumulated into orientation histograms summarizing the contents
over 4x4 sub-regions, as shown on the right, with the length of each arrow corresponding to
the sum of the gradient magnitudes near that direction within the region. This figure shows
a 2x2 descriptor array computed from an 8x8 set of samples, whereas the experiments in the
original paper use 4x4 descriptors computed from a 16x16 sample array. From [103]

The gradient orientations of sample points within a region around the keypoint are collected
into an histogram of 36 bins covering the full 360 degrees range of orientations. Each sample
added to the histogram is weighted by its gradient magnitude and by a Gaussian-weighted
circular window with a σ that is 1.5 times that of the scale of the keypoint. The orientation
assigned to the keypoint corresponds to the orientation of the highest peak in the histogram.
The orientation is accurately computed by fitting a parabola to the 3 bins surrounding the
peak. If any other peak in the histogram is within 80% of the highest peak, a new keypoint is
createdwith the same location and this orientation. Lowe experimented that even if multiple
orientation assignment is quite rare (about 15% of the keypoints) it contributes significantly
to the stability of matching.

Keypoint description The previous steps have led to the computation of repeatable
stable keypoints which are assigned a location, scale and orientation. The method of com-
putation ensures robustness to affine transformations and noise in the image. The next step
is to compute a descriptor for the local image region that is highly distinctive yet is as in-
variant as possible to remaining variations, such as change in illumination or 3D viewpoint.
The descriptor computation was inspired by the work of Edelman, Intrator, and Poggio [50],
which shown that in a model of biological vision, the perception of 3D objects is driven by
the orientation and spatial frequency of gradients but the location of the gradient is allowed
to be shifted. The computation of the keypoint descriptors is illustrated in figure 2.12.

First the image gradient magnitudes and orientations are sampled around the keypoint
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location, using the scale of the keypoint to select the level of Gaussian blur for the image.
In order to achieve orientation invariance, the coordinates of the descriptor and the gradient
orientations are rotated relative to the keypoint orientation. These are illustrated with small
arrows at each sample location on the left side of figure 2.12. A Gaussian weighting function
with σ equal to one half the width of the descriptor window is used to assign a weight
to the magnitude of each sample point as illustrated by the circular window on the left
of figure 2.12. The gaussian weighting avoid sudden changes in the descriptor with small
changes of the position and decrease the influence of gradient samples that are far from
the center of the descriptors. The keypoint descriptor is shown on the right side of 2.12. It
allows for significant shift in gradient positions by creating orientation histograms over 4x4
sample regions. The figure shows eight directions for each orientation histogram, with the
length of each arrow corresponding to the magnitude of that histogram entry. A gradient
sample on the left can shift up to 4 sample positions while still contributing to the same
histogram on the right, thereby achieving the objective of allowing for larger local positional
shifts. The descriptor is formed from a vector containing the values of all the orientation
histogram entries, corresponding to the lengths of the arrows on the right side of figure 2.12.
The figure shows a 2x2 array of orientation histograms, whereas the original sampling for
SIFT descriptors is achieved with a 4x4 array of histograms with 8 orientation bins in each.
Therefore, the each keypoint is described using a 4x4x8 = 128 element feature vector.

2.2.4.2 Speeded Up Robust Features

Based on the success of the SIFT and SIFT related descriptors, Bay, Tuytelaars and Van Gool
have recently proposed a novel scale and rotation invariant interest point detector and de-
scriptor called SURF [15]. The main achievement of SURF descriptors compared to SIFT was
to provide at least equal performances with respect to repeatability, distinctiveness and ro-
bustness, while being much faster to compute. Most of the computational efficiency of the
SURF descriptors rely on the use of integral images. An integral image is a data structure
for efficiently computing the sum of values in a rectangular subset of a grid. In the integral
image, the value at any point Î(x, y) is the sum of the pixel values that above and to the left
of the position of the point:

Î(x, y) =
∑

i≤x,j≤y

I(x, y) (2.21)

The computation of the integral image is linear using an incremental algorithm:

Î(x, y) = I(x, y) + Î(x− 1, y) + Î(x, y − 1)− Î(x− 1, y − 1) (2.22)

With such an integral image, computing the sum of the pixel values within a rectangular area
is achieved in constant time. In example in figure 2.14, the sum of the pixel values within
the rectangle delimited by the points A,B,C,D is obtained by:

∑

xA<i≤xC ,yA<j≤yC

I(i, j) = Î(A) + Î(C)− Î(B)− Î(D) (2.23)
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Figure 2.13: Left to right: the (discretized and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction and their approximations thereof using box fil-
ters. The grey regions are equal to zero. Figure from [15].

Detection of keypoint SIFT relies on the Difference-of-Gaussian (DoG) as an approxima-
tion of the Laplacian of Gaussian for scale space extrema detection. SURF detector relies on
the determinant of the Hessian Matrix instead of the Laplacian-based detector:

H(x, σ) =

[

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]

(2.24)

where x = (x, y) is a point in the image I , H(x, σ) is the Hessian matrix in x at scale σ,
Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂2x2 g(σ)with the image
I in point x.

SURF relies on an approximation of the Hessian matrix called fast Hessian using box fil-
ters. This process is illustrated in figure 2.13, where the discretized Gaussian filters (on the
left) are approximated using their box counterparts (on the right). The main advantage of
this approximation is the gain in computational efficiency using the integral images rather
than computing the discretized Gaussians. The authors shown that the experimental perfor-
mances are comparable using the discretized Gaussians and their box filters approximation.

The scale space is analyzed by filtering the original image with increasing filter sizes,
which save the time of convolution with a Gaussian kernel. A box filter of size 9 × 9 pixels
approximates a Gaussian with σ = 1.2, which is the initial scale referred as s = 1.2. The next
filter sizes are respectively 15 × 15, 21 × 21, 27 × 27. Accurate localization of maxima in the
scale space is achieved using the same technique as with SIFT algorithm [21].

Orientation assignment SURF keypoint are assigned an orientation to ensure rotation in-
variance according to the following procedure: the Haar Wavelet response to x and y direc-
tions are computed in a circular windows of size 6s around the interest point, with s the scale
of the keypoint. Using integral images, Haar Wavelet are computed efficiently. The wavelet
responses are weighted with a Gaussian of σ = 2.5s centered at the interest point. The
dominant orientation is estimated by calculating the sum of all responses within a sliding
orientation window covering an angle of π/3.

Keypoint description The extraction of the descriptor is done considering an oriented
square window centered at the interest point of size 20s (figure 2.15. This region is split
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Figure 2.14: Finding the sum of a rectangular area using integral images

up into 4 × 4 sub-regions. The Harr wavelet response in the horizontal and vertical direc-
tion (with respect to the keypoint orientation) are computed within each sub-region. The
responses are weighted with a Gaussian σ = 3.3s centered at the interest point to increase
robustness. Then, each sub-region yields a feature vector of size 4 consisting of the sum of
the wavelet responses in the x and y directions, and the sum of the absolute value of the
wavelet responses in the x and y directions. If we note dx, dy the wavelet responses, the
feature vector for a sub-region is x = (

∑

dx,
∑

dy,
∑ |dx| ,

∑ |dy|) (figure 2.16).
The total SURF descriptor hence is a 4 × 4 × 4 = 64-dimensional feature vector. The

descriptor is normalized to the unit vector to ensure invariance to contrast. An extended
version of the SURF descriptor can be computed by summing the positive and negative
wavelet responses separately. The extended feature vector is hence of size 128.

2.3 Similarity metrics

As described in the previous section, visual features can be expressed in a high dimensional
vector space. Let us denote Ω = [0, 1]d the d-dimensional data space. In such a space, the
distance between visual features can be computed with standard vector-space metrics. Let
us consider two vectors x and y ∈ Ω.

The Euclidean distance, also known as L2 distance is given in equation 2.25.

L2(x,y) =

√

√

√

√

d
∑

i=1

(xi − yi)2 (2.25)
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Figure 2.15: Example of the SURF descriptor window at different scales, within which the
descriptor is computed. From [15]

Figure 2.16: The descriptor entries of a sub-region represent the nature of the underlying in-
tensity pattern. Left: In case of a homogeneous region, all values are relatively low. Middle:
In presence of frequencies in x direction, the value of

∑ |dx| is high, but all others remain
low. If the intensity is gradually increasing in x direction, both values

∑

dx and
∑ |dx| are

high (right). From [15].
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TheManhattan distance (or L1 distance) is given by equation 2.26.

L1(x,y) =
d

∑

i=1

|xi − yi| (2.26)

Both distances are specific cases of the generalizedMinkowski or Lp distance, which is
given in equation 2.27.

Lp(x,y) =
p

√

√

√

√

d
∑

i=1

(xi − yi)p (2.27)

Another specific case of Minkowski distance is the Chebyshev distance, also known as
Maximum or L∞ distance (equation 2.28).

L∞(x,y) = lim
p→∞

p

√

√

√

√

d
∑

i=1

(xi − yi)p = max
i

{

|xi − yi|
}

(2.28)

TheMahalanobis distance is expressed in equation 2.29.

MAHALANOBIS(x,y) =

√

(x− y)TΣ−1(x− y) (2.29)

Σ−1 is the inverse covariance matrix. Multiplying by the inverse covariance matrix as the
effect of weighting each attribute by a coefficient inversely proportional to the noise on each
component (assuming a Gaussian distribution of the component). Indeed, when one re-
placesΣ−1 with the identity matrix, the Mahalanobis distance is the same as the L2 distance.

The cosine similarity (equation 2.30) gives the similarity between the vectors by comput-
ing the cosine of their angle.

COSINE(x,y) =
x.y

||x|| ||y|| (2.30)

. is the vector dot product and ||x|| the L2 vector norm. The cosine similarity is a similarity
value and not a distance as opposed to the previous measure. A cosine similarity of 1 in-
dicates that the vectors point exactly in the same direction while a similarity of 0 indicates
independence.

For special cases where x,y are strings, of equal lengths, the Hamming distance mea-
sures the minimum number of substitutions required to change one string into the other.

HAMMING(x,y) =

d
∑

i=1

δ(xi, yi) with δ(x, y) =

{

0 if x = y

1 otherwise
(2.31)

Varma [166] employ the χ2 statistics to measure distances between the texton distribu-
tions with a nearest neighbour classifier:

χ2(x,y) =

d
∑

i=1

(xi − yi)
2

xi + yi
(2.32)
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Features such as normalised histograms provide the basis for an empirical estimate of
the probability density function (pdf). Probabilistic approaches based on the measurement
of the overlap between pdfs are equivalent to measuring a distance [30]. The Bhattacharyya
distance (equation 2.33) measures the amount of overlap between two pdfs:

BHATTA(x,y) = − log
d

∑

i=1

√
xi × yi (2.33)

A closely related measure was given by Matusita [109] (equation 2.34)

MATUSITA(x,y) =

√

√

√

√

d
∑

i=1

(
√
xi −

√
yi)2 (2.34)

The Kullbach-Lieber divergence is a (non-symmetric) measure of the difference between
pdfs [94].

K-L(x,y) =
d

∑

i=1

yi × log(
yi

xi
) (2.35)

The Earth Movers Distance (EMD) [145] is a measure of the distance between two dis-
tributions as the cost of transforming one distribution into the other one. It relies on the
definition of a ground truth distance, which represents the cost of transforming a single
feature into another one. We note d(i, j) the cost of transforming feature i into feature j.
Typically, for histograms, d(i, i)will be null while d(i, j) is not. Hence, the EMD is a measure
which also takes into account inter-bin measures. The EMD is defined as equation 2.36:

EMD(x,y) =
d

∑

i=1

(fi,jdi,j) (2.36)

fi,j is the flow between xi and yj . The flow that minimises the overall cost is found by solv-
ing the transportation problem [87]. The EMD is a true metric if the ground truth distance is
a metric and x,y are equal-weight distributions. Rubner et al. [145] have shown that the met-
ric is perceptually sound for color and texture-based image retrieval. The main drawback
is that solving the transportation problem is computationally expensive. Hence, the EMD
is usually used for signatures, where the distribution is encoded using a few representative
(possibly of different size) per image, and not suitable for histograms.

Most of the MPEG-7 features introduced in section 2.2 uses standard vector metrics
(L1 or L2) for the computation of a distance between the feature vectors. However,
the standard also propose some ad-hoc distance measures for some descriptors. Hence,

given two DCD descriptors DCD1 =
{

(c1i, p1i, v1i), s1

}

, i = {1, 2, . . . , N1} and DCD2 =
{

(c2i, p2i, v2i), s2

}

, i = {1, 2, . . . , N1}, three dissimilarity functions are defined depending on
the parameters used for the computation: equation 2.37 gives the dissimilarity between the
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descriptors discarding the spatial coherence and variance parameters, equation 2.38 uses the
spatial coherence field and equation 2.39 uses the variances.

D2(DCD1,DCD2) =
∑N1

i=1 p
2
1i +

∑N2

j=1 p
2
2j −

∑N1

i=1

∑N2

j=1 2a1i,2jp1ip2j (2.37)

with ak,l =

{

1− dk,l/dmax dk,l ≤ Td

0 dk,l > Td
the similarity coefficient between two colors ck, cl,

dk,l = L2(ck, cl) the Euclidean distance between the colors, Td the threshold for two colors
to be considered similar and dmax = αTd. The standard recommend a value of Td between
10 and 20 in the Luv color space and α from 1.0 to 1.5.

DS(DCD1,DCD2) = w1 |s1 − s2|D + w2D (2.38)

w1, w2 are fixed weights with a recommendation of 0.3 and 0.7 respectively by the standard.
The third distance function is based on a modeling of the colors with a mixture of Gaus-

sian distributions, using the variance parameters. The squared difference between the dis-
tributions is given by:

Dv(DCD1,DCD2) =

N1
∑

i=1

N2
∑

j=1

p1ip1jf1i,1j +

N1
∑

i=1

N2
∑

j=1

p2ip2jf2i,2j −
N1
∑

i=1

N2
∑

j=1

2p1ip2jf1i,2j (2.39)

where

fxi,yi =
1

2π

√

v
(l)
xiyjv

(u)
xiyjv

(v)
xiyj

× exp−1

2

( c
(l)
xi,yj

v
(l)
xi,yj

+
c
(u)
xi,yj

v
(u)
xi,yj

+
c
(v)
xi,yj

v
(v)
xi,yj

)

and

c
(l)
xi,yj = (c

(l)
xi − c(l)yj )2, v

(l)
xi,yj = (v

(l)
xi + v

(l)
yj )

with c(l)xi and v
(l)
xi the dominant color values and color variances, x, y the query and target

descriptors, i, j the descriptor components and l, u, v the components of the color space.
For CLD, the standard propose the following distance measure (equation 2.40):

D(CLD1,CLD2) =

√

∑

iwyi(Y
(1)
i − Y (2)

i )2 +
√

∑

iwbi(Cb
(1)
i − Cb(2)i )2 +

√

∑

iwri(Cr
(1)
i − Cr(2)i )2

(2.40)

The superscripts (1), (2) identify the descriptors, the subscript i represents the scanning or-
der of the coefficients of the DCT transform, Y,Cb, Cr represents DCT coefficients the lu-
minance and chrominance and the w are weights to adjust the relative importance of each
coefficient. A good weighting could assign more weight to the first coefficients of the DCT
(low frequencies). No recommended values for the weights are given by the standard.
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2.4 Clustering

Clustering is defined as the process of unsupervised grouping of data patterns into groups
(clusters) [81]. The literature about data clustering is vast and some of its fundamental con-
tributions include the Introduction to Cluster Analysis by Kaufman and Rousseeuw [91],
the 1999 review of Jain et al. [81] and the more recent reviews of Xu and Wunsch [175] and
Berkhin [19]. An exhaustive overview of clustering algorithms falls out of the scope of this
manuscript. Nevertheless, some of the approaches that we have developed relied on clus-
tering algorithms. The purpose of this section is to introduce them to the reader.

2.4.1 K-means clustering

Given the data set D = {x1,x2, . . . ,xN}, the aim of k-means clustering is to partition the
data into k < N sets S = {S1, S2, . . . , Sk} so as to minimize the within cluster similarity
measure (equation 2.41):

argmin
S

k
∑

i=1

∑

xj∈Si

||xj − µi|| (2.41)

where µi is the mean (center of mass) of cluster Si
It is show that the exact solution to this problem isNP-hard [156]. The following iterative

refinement algorithm have been proposed by Lloyd [101]:

1. randomly choose k initial centers C = {c1, c2, . . . , ck}

2. for each i ∈ {1, . . . , k} set Si = {x ∈ D/||x− ci|| ≤ ||x− cj ||∀j 6= i}

3. for each i ∈ {1, . . . , k}, set ci = 1
|Si|

∑

x∈Si
x

4. repeat 2 and 3 until convergence (i.e. S no longer changes)
This algorithm provides a simple and fast solution to the problem. Although it has no

approximation guarantees at all, it is still one of the most employed method due to it’s sim-
plicity. Arthur and Vassilvitskii recently proposed an improvement of Lloyds algorithm by
performing a careful choice on the initial centroids called kmeans++ [6]. Let us note δ(x) the
shortest distance from a data point to the closest center already chosen.

1. randomly pick center c1

2. choose center ci ∈ D with probability δ(x)2∑
x∈D δ(x)2

3. repeat 2 until k centers have been chosen

4. proceed with the standard k-means

The intuition behind this initialisation scheme is to spread out the initial centers far away
from each other. Although the seeding method add extra time for the computation of the
initial centers it is shown experimentally that the convergence of the k-means algorithm is
much faster, hence making the whole process more efficient. Moreover, is is guaranteed that
k-means++ provides an O(log(k)) optimal solution worst case [6].
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2.4.2 Diday’s dynamic cloud clustering

The dynamic cloud clustering algorithm of Diday [46] partition the data into k < N non-
empty sets S = {S1, S2, . . . , Sk} and a set of prototypes Bi ⊂ Si, |Bi| = T, T ≤ |Si| represent-
ing the partitions minimizing criterion of adequacy between the partition and their proto-
types. The k-means algorithm can be seen as a special case of the dynamic cloud clustering
where the prototype for each class is the cluster centroid and the criterion to minimize is the
within cluster similarity measure. Again, an iterative algorithm proceeding into successive
steps of partitioning and refining prototypes is defined as follows:

1. randomly choose b ∈ Bi from D

2. for each i ∈ {1, . . . , k} set Si = {x ∈ D/∀j ∈ [1, . . . , k], j 6= i, min
bi∈Bi

||x−bi|| ≤ min
bj∈Bj

||x−
bj ||}

3. for i ∈ [1, . . . , k] set Bi = {x ∈ Si/Φi(x∈Bi
) < Φi(x∋Bi

)}

4. repeat 2 and 3 until convergence (i.e. B no longer changes)

Φ(x) is the criterion to minimize such as the distance to the cluster centroid (equation
2.42).

Φi(x) = ||x− ci|| with ci =
1

|Si|
∑

u∈Si

u (2.42)

Diday’s algorithm is a generalization of the k-means clustering where the cluster is not
uniquely represented by it’s centroid, but by the set of prototypes. Hence, while k-means
cluster are represented by hyper-spheric clusters, the dynamic cloud clustering enable to
have clusters with a more flexible shape.

2.4.3 DBScan

DBScan is a clustering algorithm originally proposed by Ester et al. for the clustering of large
spatial databases [51]. DBScan belongs to the class of density-based clustering algorithms.
The idea of density-based clustering is intuitively pictured in figure 2.17. When looking at
the sample sets, we can easily and unambiguously detect clusters of points and noise points,
i.e. those points that do not lie in any of the clusters. This is due to the fact that within each
cluster, there is a typical density of points which is considerably higher than outside of the
clusters.

The DBScan algorithm defines the notion of density in a neighbourhood of an object
using 2 parameters: ǫ, which is a distance radius around the object andMinPts the minimal
number of points required to form a cluster. The algorithm proceeds as follows:

1. Choose an initial data point xi ∈ D that does not belong to any cluster.

2. xi and it’s neighbours are recursively added to the current cluster if they respect the
criterion of density: there are at least MinPts data points in the cluster and any data
point in the cluster has at least 1 other data point in the cluster at a distance less than ǫ.
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Figure 2.17: Sample Databases (picture from [51]).

The advantage of this algorithm is that it can recover clusters of arbitrary shape such as
the one in figure 2.17. However, it’s complexity is quadratic with respect to the number of
data in the database.

2.5 Evaluation metrics

In this section, we introduce the main concepts and metrics used in the evaluation of the
performances of systems. Thesemetrics will be used in the following chapters to evaluate the
tools that we have developed during this PhD. These metrics are related to the effectiveness

of the system, that is the ability of the system to retrieve relevant documents while at the
same time holding back non-relevant one [?]. During our evaluation, we assumed that the
relevance of documents is not an issue[37] and can be obtained straightforwardly from the
ground truth (definition below). Those metrics, coming from the Information Retrieval (IR)
community, are directly applicable to CBIR and image classification systems. A document in
an IRsystem correspond to a single image in a CBIR system. In the following we might refer
to document or image equivalently.

Let us introduce the following concepts:

• The ground truth (GT) is a set of documents which have been manually annotated by
a trustworthy human operator. The annotation can take different forms:

– A global categorization of images, where each image is classified into one (or possi-
bly more than one) predefined categories.

– A roughly localised annotation of images, where parts of the image depicting spe-
cific categories (specific concepts) are localised, using regions-of-interest.

– A pixel-wise annotation of images, where each image pixel is classified as belong-
ing to one (or possibly more than one) of the predefined categories.

For a given classifier C and a given class λ we denote:

• True Positive (TP) the number of examples for which the true class is λ and that has
been assigned class λ by the classifier.
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• True Negative (TN) the number of examples for which the true class and the classifier
answer is not λ.

• False Positive (FP) the number of examples for which the true class is not λ but the
classifier answer is λ.

• False Negative (FN) the number of examples for which the true class is not λ but the
classifier answer is λ.

• Positive (P) = TP+ FN is the total number of positive examples.

• Negative (N) = FP+ TN is the total number of negative examples.

Most of the evaluation metrics can be computed using the quantities just defined. The
Percentage of Correct Classification (PCC, equation 2.43) [144] is the simplest way to assess
the classification performances. However in the case of unbalanced dataset (e.g. N ≫ P)
this coefficient is not very representative: a classifier classifying all instances as negative
(respectively as positive) will obtain very good (resp. very bad) PCC score.

PCC =
TP+ TN

TP+ TN+ FP+ FN
(2.43)

The Jaccard Coefficient( JC, equation 2.44)[154] and the Yule Coefficient (YC, equation
2.45)[154] behaves better in that case, minimising or eliminating the expected effect of a large
amount of TN examples.

JC =
TP

TP+ FP+ FN
(2.44)

YC = |( TP
TP+ FP

) + (
TN

TN+ FN
)− 1| (2.45)

Note that the Yule Coefficient cannot be computed when a classifiers gives only positive (or
only negative) answers since the denominators would be 0.

Important evaluation metrics come from the IRcommunity such as the Recall (equation
2.46) and the Precision (equation 2.47). The precision can be interpreted as a measure of the
exactness of the system, while the recall represents its completeness.

R =
TP

TP+ FN
∈ [0, . . . , 1] (2.46)

P =
TP

TP+ FP
∈ [0, . . . , 1] (2.47)

An ideal classifier yieldsR = P = 1. Precision increases when FP decreases. Recall increases
when FN decreases. This usually but not necessarily means that when the recall increases
the precision decreases, hence both measures are usually evaluated. An aggregated measure
of Recall and precision is the Fβ score (equation 2.48). In the case where β = 1, the F1-Score
is the harmonic mean of precision and recall. Fβ score measures the effectiveness of retrieval
with respect to a user who attaches β times as much importance to recall as precision [140].

Fβ =
(1 + β2)(P× R)

β2 × P + R
∈ [0, . . . , 1] (2.48)
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H
H
H
H
H
H

P

N
A B C

A 10 0 3
B 6 24 4
C 3 0 15

Table 2.1: Example of confusion matrix

For multi-class classification tasks, a common way of evaluating the performances of a
system is to represent the results with a confusion matrix. Each row in the matrix represent
the actual classes while each column represent the predicted classes. Hence, as an example
on table 2.1, the 6 in the second row, first column means that 6 instances of class B have been
predicted as class A by the system. A prefect classifier would lead to a confusion matrix
where only the diagonal elements (TP) are non-zero. As it’s name stands, this representation
is convenient to see if the system is confusing some classes. Moreover, Recall and Precision
figures for a class i can be computed efficiently from the matrix by dividing the diagonal
value (M(i, i) = TP) by, respectively, the sum of the ith row (TP + FN) or the sum of the ith

column.
In a classic document retrieval task, the user wants the retrieved documents to be sorted

according to their relevance to the query. A desirable feature for the system is the ability
to rank the relevant documents among the first returned results. This can be captured by
computing the precision at given cutoffs, the Precision at n (equation 2.49):

P(n) =
1
n

∑n
i=1 δ(i) with δ(i) =

{

1 if the ith document retrieved is relevant

0 otherwise
(2.49)

P(n) does not measure Recall. The Average Precision (AP, equation 2.50) is a measure
that combines Precision, Recall and relevance ranking.

AP =

∑N
n=1 P(n) × δ(n)

P
(2.50)

N is the number of documents retrieved by the system. To get AP = 1, the system must
retrieve all the relevant documents (R = 1) and rank them perfectly (P = 1). Note that
the average precision does not quantify the cost of returning irrelevant document after all
relevant documents in the query.

The AP is computed for a single query. The system performances for several queries can
be computed using the Mean Average Precision (MAP, equation 2.51):

MAP =
1

K

K
∑

k=1

AP (k) (2.51)
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K is the number of queries issued to the system, AP (k) is the average precision of the kth

query. As it’s name indicates, the MAP is the mean of the average precisions over several
queries of the system. Usually, systems are evaluated by computing the MAP with all the
available documents in the dataset. MAP scores can also be computed for specific categories
of document, by querying the system with only documents belonging to this category. R, P
andMAP are widely spread metrics which are used for the evaluation of systems in renown
international challenges (TrecVideo [73], Pascal Visual Object Class [52], ImageCLEF [122]).

Finally, the performances of a system can be summarized graphically using Precision-
Recall graphs [95] (see figure 2.181).

The graph displays the precision(Y-axis) versus recall (X-axis) scores obtained after each
relevant query, hence illustrating the trade-off between precision and recall. An ideal goal
for a retrieval system is to increase both precision and recall, i.e. the curve must bend over
the top right hand corner so that both recall and precision are higher at every point along
the curve. Average precision is the area under the precision-recall graph. By moving the
curve up and to the right, the area under the graph increases, thereby increasing the average
precision.

Figure 2.18: Example of Precision-Recall graph. Image taken from Pascal VOC2008 challenge
results

1Available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/results/cls/

_voc2007_comp1_bicycle_pr.shtml
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Chapter 3

Indexing and organizing image
database through global descriptors

3.1 Multidimensional Clustering Index

3.1.1 Introduction

In this section, we propose an indexing schema for image databases based on multiple clus-
tering according to the available set of visual descriptors. We will start by describing the
difficulties of multidimensional indexing and giving elements of the state-of-the-art in mul-
tidimensional indexing structures. We will then describe our approach and demonstrate
experimentally it’s efficiency.

3.1.2 Data structures for multidimensional Indexing

The use of image content as an alternative to keyword-based indexing is an intuitive and
attractive approach. In chapter 2, we saw that most visual descriptors take the form of a
d-dimensional vector, where d can be arbitrary large. Let us set the following notations:

• d the number of dimensions.

• N the number of data points.

• Ω = [0; 1]d the data space. We consider all descriptors normalised, that is with all
coordinates in the interval [0; 1].

• D ⊆ Ω the data set.
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Considering a data space Ω and a dataset D, such a task as finding similar images in
a database can be expressed as finding the nearest or k-nearest neighbours (k-NN) in the

chosen description space. Intensive research has been carried on the subject of k-NN search

for multidimensional spaces.

Definition 3.1.1. The Nearest Neighbour (NN) to a query point Q is the data point nn(Q) ∈ D
which lies closest to Q in D: nn(Q) = {P ∈ D|∀P ′ ∈ D, ||P −Q|| ≤ ||P ′ −Q||} where || • − • ||
is typically assumed to be an Lp distance (cf equation 2.27) [172].

The k-nearest neighbours (k-NN) to a given point can be defined in a similar way.

An obvious solution to k-NN search is to sequentially compare each element to the query

and keep the k most similar. However, this is feasible only for relatively small databases.

High-dimensional indexing schemes are alternatives for accelerating the search which rely

on data structures that simplifies the retrieval task. The vast literature on the topic was

reviewed by Castelli [29]. Multidimensional indexing techniques can be classified into dif-

ferent categories:

• Space partitioning methods divide the data space along predefined or predetermined

lines (hyperplanes) regardless of data clusters. Space partitioning method have been

the first to be proposed. They include techniques like Quad-trees[56], k-d-b-trees [142]

and the Grid-File [124]

• Data partitioning methods divide the space according to the distribution of data in-

serted into the structure. Such methods take advantage of the fact that in real datasets,

the samples are usually clustered and occupy only a small portion of the full data

space. Several variants have been proposed such as the TV-trees [99], the X-trees [18],

the M-trees [34] or the SR-trees [90].

• Space filling curves have been proposed as an alternative approach for multidimen-

sional indexing. Those methods have been inspired by the research in fractal geome-

try, which show that there exists continuous mappings from the unit interval [0; 1] to

any unit hypercube [0; 1]d [163]. Indexing using space filling curves is intuitive. The

high dimensional data points are mapped into a curve, obtaining a one dimensional

coordinate named the extended key. The extended keys are used to perform straight-

forward one dimensional similarity search. The assumption is that points which

are close to each other on the curve are also close together in the multidimensional

space. However, this is not always the case especially when the number of dimen-

sions are increased. Most authors propose the usage of several space filling curves

[111, 149, 98, 163].

Despite the active research for efficient multidimensional indexing structures, it has been

shown that none of these methods can perform well in high dimensional spaces [24, 172].

Here, high dimensional means more than 20 dimensions. This is problematic for image sim-

ilarity search where the description space can grow much larger. In such spaces, most of

the indexing methods are outperformed by the straightforward sequential scan. This phe-

nomenon is known as the curse of dimensionality. The curse of dimensionality refers to



3.1 – Multidimensional Clustering Index 43

the exponential growth of hyper-volumes as a function of dimensionality. Our perception

and the geometric properties that rule the 3-dimensional world do not hold in higher dimen-

sional spaces. Data structures that rely on the properties of low dimensional spaces do not

perform well in high dimensional spaces. Such data structures can even become intractable.

As an example, imagine a space partitioning structure that sample the input space into reg-

ularly spaced intervals (cubes or hypercubes for higher dimensions) of size 0.1. Hence 10

such intervals are sufficient to cover the one dimensional unit interval. For d dimensional

unit hypercube, the number of hypercube necessary to span the entire input space is 10d. As

the number of dimensions grows, it is more likely that this number will exceed the number

of samples in the dataset. Moreover, this number makes the index intractable due to the

huge amount of memory requirement, while most of the hypercubes contain no data.

Another difficulty arising in high dimensional spaces is the fact that randomly sampled

points from the same distribution appear uniformly far from each other, and each point sees

itself as an outlier [29]. On the other hand, the other points in the database appear to be at

almost the same distance. This is illustrated by the following experiment, quoted from [29]:

« Consider the following simple example: let a database be composed of 20, 000 indepen-

dent 100-dimensional vectors, with the features of each vector independently distributed

as standard Normal random (i.e., Gaussian) variables. Normal distributions are very

concentrated: the tails decay extremely fast, and the probability of sampling observations

far from the mean is negligible. A large Gaussian sample in 3-dimensional space looks

like a tight, well concentrated cloud, a nice cluster. Not so in 100 dimensions. In fact,

sampling an independent query template according to the same 100-dimensional stan-

dard Normal, and computing the histogram of the distances between this query point

and the points in the database, yields the result shown in Figure 3.1. In the data used for

the figure, the minimum distance between the query and a database point is 10.1997, and

the maximum distance is 18.3019. There are no close points to the query, and there are

no far points from the query. »

Recent research have proposed methods for overcoming the running time bottleneck by

using approximation [121, 4, 2]. In this formulation the algorithm is allowed to return a point

whose distance from the query is at most c times the distance from the query to its nearest

points, c > 1 is called the approximation factor.

Despite the very active research in multidimensional indexing, it is very common that

the dimension of the descriptor space for CBIR systems exceeds the current expectation for

indexing structures. Griga [68] proposed a semi supervised categorisation of image database

with a set of low level descriptors leading to a feature vector of more than 600 dimensions.

Ferecatu and Boujemaa [54] proposed an interactive retrieval tool for remote sensing images

where the concatenated feature vector also exceed 600 dimensions. In this case, one solution

is to perform dimensionality reduction of the data space prior to the indexing schema. Griga

and Feracatu both employed Principal Component Analysis (PCA) to achieve this goal. PCA

seeks the best approximation of a given dataset of points using a linear combination of a set

of vectors which retain maximum variance along their directions [48]. This set of vectors is
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Figure 3.1: Distribution of the distances to a query in a 100-dimensional dataset indepen-

dently distributed according to Gaussian distributions. Figure from [29].

called the set of Principal Components. One can fix the cardinality of the set of principal

components to project into. Griga mapped the original input space into a 29 dimensional

feature vector. Ferecatu and Boujemaa did not set this dimension but they discarded the

dimensions which represented less than 1% of the total energy of the dataset. PCA was also

used in other publications such as Ke and Sukthankar [92]. Based on the SIFT scale-space

keypoint detection, they projected the normalised horizontal and vertical gradient patches (a

3042-dimensional feature vector) into a linear combination of 20 principal component axis,

and showed improvement over the SIFT descriptors both in compactness of representation

and in efficiency for image retrieval.

3.1.3 Proposed framework

Despite its successful application as a dimensionality reduction technique prior to index-

ing, PCA has some limitations. Using PCA, we assume that the dataset can be accurately

represented by a linear combination of it’s basis. A more application-dependant limitation

to PCA is the fact that the the semantics of the description space is lost. Indeed, in the

original description space, one has the control over what each dimension or set of dimen-

sions represents. As an example, in the MPEG-7 EHD descriptor, each dimension encodes

the proportion of a particular edge orientation in a particular sub-image. If we consider a

feature vector as a concatenation of several (possibly multi-dimensional) descriptors, each

descriptor yields a particular view of the content of the image. In the projected PCA space,
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the dimensions of the feature vectors are expressed as linear combinations of the original

dimensions. One has no control over this combination, which is driven by the data. The di-

mensions of the projected space can represent a mixture of totally uncorrelated descriptors

in terms of semantics.

Queries in CBIR are ill-defined. In a typical Query By Example engine, the same image

could be used as query for users having different intentions in mind. Relevance feedback

[159, 54] techniques involves interaction with the users to improve the set of returned results.

Typically, after an initial query, the user mark the results as relevant or irrelevant. The system

takes these information to refine the retrieval results based on this feedback. These two

steps are carried out iteratively to improve the performance of the image retrieval system

by gradually learning the user’s preferences. A different approach trying to overcome the

problem of user intent was developed by Naud et al. [123]. According to the user feedback,

the system captures the allowed variability in the request (e.g. different color is allowed but

same shape). The similarity measure between image is interactively adapted to better fit the

user requirement.

The goal of our indexing technique is to structure the image database to enable efficient

retrieval of a set of relevant images while filtering out large portions of non relevant images.

Moreover, we want to keep the semantics of the descriptors used to characterise the images

intact. To do so, we propose to compute a multidimensional index that encodes the different

views of an image database yielded by different low level descriptors. The index is com-

puted through multiple clustering of the database using the different low level descriptors.

Let L = {L1,L2, . . . ,LK} be a set of descriptors. Each of them has the dimensionality dk.

Let us consider the hyper space Ω = [0; 1]d=
∑K

k=1
dk . Let us now consider subspaces Ωk of Ω

such that ∪K
k=1Ωk = Ω and ∩K

k=1Ωk = ∅. Let D be an image database (i.e. the dataset) and Dk

its projection onto the space Ωk. We note Sk = {S1
k ,S2

k , . . . ,S
Nk

k } a partition of Dk, with Si
k

the elements of this partition (clusters).

Let us consider a document X l from D represented by a data point yl
k in Dk. We say that

X l is indexed in Dk by e∗k if:

yl
k ∈ S∗k (3.1)

Definition 3.1.2. We call the multidimensional clustering index of a document X a vector e =

(e∗1, e
∗
2, . . . , e

∗
K)T ⊂ N

+K where e∗k is the label of the cluster in partition Sk satisfying (3.1).

Each visual descriptor encodes a specific information about the content of the image.

The images which are grouped in the same cluster according to a descriptor share common

characteristics with respect to this descriptor.

A typical query using the multidimensional clustering index is to perform a within-
distance (or range query) query on the index with the hamming distance.

Definition 3.1.3. The within-distance query returns all the data at a distance less than ǫ from a

query Xq: wd(Xq) = {Y l ∈ D|Dist(Xq, Y l) < ǫ}

The hamming distance gives the number of descriptors for which the result images

shares common characteristics (i.e. belong to the same cluster) with the query. Moreover,
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the computation of the hamming distance can be tuned to adapt to the user query. We know

the relation between the dimensions of the index and the underlying visual descriptors that

were used during clustering. Descriptors irrelevant to the query can be discarded when

computing the hamming distance.

Inserting new images in the database is a fast operation. The clustering index for the

new images is computed by querying the already existing clustering models to get the clus-

ter indexes for the new image. The multidimensional clustering index can also be enriched

without modifying the already computed indexes: when a new low level descriptor is avail-

able, one can add a dimension to the index using the same procedure without requiring to

modify the other dimensions. However, if one wants to update the clustering models, e.g.

after several new images have been inserted into the database to better match the new distri-

bution, the index has to be recomputed for all the existing images. The last point actually de-

pends on the clustering algorithm employed. Some clustering algorithms called incremental

clustering algorithms allow to insert new data and update the models (i.e. add/delete or

merge clusters) on the fly [70, 105]. Only the part of the index that are concerned with those

modifications could be updated. In our experiments, we did not use incremental clustering

algorithms.

3.1.4 Experiments

3.1.4.1 Datasets and experimental protocol

We have experimented our approach with two image databases. The first database is the

Amsterdam Library of Object Images database (ALOI). ALOI is a color image collection

of one-thousand objects, recorded for scientific purposes. Each object was captured with

systematically varied viewing angle, illumination angle and illumination color for each ob-

ject. 96 shots of each object is taken, leading to a collection of 96000 images. Details on the

ALOI database have been published by Geusebroek et al. [63]. Figure 3.2 shows examples of

objects and their different capture conditions.

The second image database is the WANG database [171]. This database is a subset of the

Corel database containing 10 categories with 100 images per category. Except for one cate-

gory (dinosaurs), the images are natural outdoor images. As opposed to the ALOI database,

the imaging conditions have not been controlled using a strict experimental protocol. Exam-

ple of images are shown in table 3.1.

We compared the efficiency of the multidimensional clustering index in terms of re-

trieval accuracy compared to the use of the full content descriptor. For a document X l in

the database D, we call full content descriptor a vector yl ∈ Ω = [0; 1]d,d=
∑K

k=1
dk . It is formed

by the concatenation of descriptors of X l in subspaces Ωk. This is known as the early fusion

of the descriptors. We also compare the performances with a dimensionality-reduced vector

using PCA. The PCA is performed on the full content descriptor into K dimensions, with

K the number of descriptors. Hence, the dimensionality of the PCA descriptors and the

clustering index is the same.
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Figure 3.2: Example images from the ALOI database. Each line represents shots of the same

object. First and second column show the object from the front with different illumination

conditions. Third and fourth column show the object rotated with an angle of 105 and 185

degrees respectively.
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Table 3.1: Samples from the WANG dataset: 100 images per category, 10 categories
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Descriptors MAP score using ALOI MAP score using WANG

Full Descriptors 0.522 0.523

Clustering Index 0.407 0.517

PCA 0.266 0.458

Table 3.2: Mean Average Precision scores on the ALOI database using the Full MPEG-7 fea-

ture vector, the proposed clustering index method and the PCA.

3.1.4.2 Results and discussion

To compute the multidimensional clustering index, we used k-means clustering into k =

1000 classes for ALOI database and k = 10 for WANG. The set of visual descriptors was set

to EHD, CLD, CSD, SCD.

As a first experiment we compared the Mean Average Precision of the system using the

multidimensional clustering index, the full descriptors and the PCA descriptors. For each

image in the database, we compute the distance between the query and all the other images.

The results are returned sorted by increasing distance from the query. With the multidimen-

sional clustering index, the hamming distance between the indexes was considered. For the

full feature vectors and PCA feature vectors, we computed the L1 distance between the vec-

tors. The results of this experiment are reported in table 3.2. The best results are obtained

when computing the distance with the full feature vector, with a MAP of 0.522 and 0.523

using ALOI and WANG database respectively. Note that the WANG database was used by

Deselaers et al. for the evaluation of features for CBIR. The best MAP on the dataset was

0.505 using color histograms. Here, the early fusion of descriptors brought a slight improve-

ment over the single descriptors. The second ranking approach is the clustering index, with

respective MAP scores of 0.407 and 0.517. Finally, the PCA description space comes third

with 0.266 and 0.458. Despite the high dimensionality of the concatenated feature vector for

the full descriptors, this descriptor space still yields the best results. However, such a high

dimensional space does not allow indexing the feature vectors as such to provide efficient

retrieval performances. When working on the reduced dimensionality space, the multidi-

mensional clustering index experimentally shows a better efficiency compared to the same

dimension PCA feature vector. Let us recall that the results with the multidimensional clus-

tering index are ranked according to the hamming distance while the other results are ranked

with the L1 distance. Hence, a much coarser ranking is achieved with the multidimensional

clustering index, where there are several ties in terms of hamming distance (which is an in-

teger distance). Despite this coarse ranking, the MAP results shows decent performances

and outperform the PCA based ranking. Moreover, as opposed to the PCA descriptors, it is

possible with the clustering index to perform queries focused on particular descriptors. This

information is lost in the reduced PCA space.

The first experiment showed the efficiency of the multidimensional clustering index with

respect to a similar PCA-based feature vector. Nevertheless, the full feature vector yields the

best results in terms of MAP. However, combined with the hamming distance, the primary
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(a) ALOI (b) WANG

Figure 3.3: Recall/Precision curves for range queries using the multidimensional clustering

index and their equivalent k-NN queries using the full content descriptor and PCA descrip-

tors

purpose of the multidimensional clustering index is not to perform such a task as ranked

retrieval. Indeed, the hamming distance provides only coarse ordering of the set of results.

The purpose of the index is rather to be used as a pre-filtering, which returns a set of candi-

date similar images. This set can be accurately ranked using the full descriptors in a second

time. To demonstrate the efficiency of the clustering index for such a task, we performed

a second experiment on the same datasets. The experiment consisted in performing range

queries with the multidimensional clustering index, and computing Recall and Precision fig-

ures for this query. We varied the threshold on the hamming distance from 0 to K − 1. A

hamming distance of 0 means that the query image and the results images are in the same

clusters for all the visual features considered. A hamming distance of K − 1 means that the

query and the images returned share at least one cluster according to one of the descriptors.

Obviously, a hamming distance of K would return the whole dataset. Since it is not possible

to use the same threshold with the other descriptors, we performed a k-NN search with k set

to the cardinal of the set returned using the range query on the multidimensional clustering

index. The results of these experiments are reported in figure 3.3.

Figure 3.3 shows the performances of the clustering index compared to the full content

and PCA descriptors. Despite the lower MAP score, the multidimensional clustering index

achieves better results than the full descriptors in terms of recall/precision for range query.

Compared to the task of ranking using the coarse hamming distance, the clustering index is

efficient by effectively grouping similar images into the same clusters. A low threshold (e.g.

set to 0) will give a usually very small set of images which are visually close to the query,

hence achieving a good precision but a low recall. The recall is increased as we become more

tolerant in the threshold. Experiments on the ALOI database (figure 3.3(a)) show that when

the threshold is too high (i.e. query image and returned results must share only 1 cluster)
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the full descriptors become more efficient. This is not the case on the WANG database where

the clustering index stays better for all the tested threshold values (figure 3.3(b)). However

as the threshold becomes high the capability of discarding irrelevant images is narrowed.

This experiment demonstrate that the multidimensional clustering index is effective as a

pre-filtering, organisational tool of the image database into different views. Queries can be

precisely defined by carefully choosing the set of descriptors we want to use when querying

the index. For a finer ranking of the images by similarity, one should compute the accurate

distance between the feature vectors for the images returned by the index.

3.2 Indexing via Semantic Clustering Model

We have seen in the industrial use case descriptions (chapter 1), that the typical job of a web

crawler is to seek the web for interesting images and save them in a global image repository.

Images in the repository are grouped into folders, representing particular, highly semantic,

subjective categorization (such as car models, brands, etc.).

We propose to ease the work of such persons by constructing a model, based on global

visual descriptors, that best approximates the user categorization. A good approximation of

the user-defined categorization is more likely to be obtained using a combination of several

visual descriptors. We propose to perform a hierarchical decomposition of the initial set of

images until the user-defined number of group is reached. At each intermediate level of the

hierarchy, the dataset (or sub-set) is split into several groups by k-means clustering. The

clustering is performed using a single visual descriptor from a set of available descriptors.

The process is illustrated in figure 3.4. We employ a brute force search of the possible hierar-

chies, and evaluate each solution with respect to the ground truth. The solution which yields

the best assignment overall is retained. The hierarchical model is used to automatically as-

sign new images to the existing folders. The objective of this task is very ambitious, and it

would be an illusion to expect that there exist a perfect correspondence between visual and

semantic similarities. However, we believe that an approximation of such a correspondence

can be made. A problem is then to evaluate the quality of the automatic grouping and link

the computed groups with the user-defined groups. In section 3.2.1, we describe the existing

methods used to evaluate the quality of a clustering algorithm. In section 3.2.2, we propose

to evaluate the quality of the partition as a best matching problem, for which efficient al-

gorithm exists. We evaluate our method on datasets provided by our industrial partners in

section 3.2.3.

3.2.1 Evaluating the quality of clustering

Evaluating the quality of a grouping of data is an open problem. The main difficulty comes

from the fact that the task is highly subjective: different relevant clustering of the same data

can coexists. Candilier identify four main methods to evaluate the quality of clustering [25].

1. Using artificial data: the grouping of the artificially generated data is known and can

be compared with the output of the clustering algorithm. The problem lies in the fact
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Figure 3.4: Hierarchical decomposition of the set of images into a user-defined number of

clusters

that the clustering algorithm is confronted with specific distributions which does not

necessarily reflect real data.

2. Using labeled data: observe if the method effectively groups data of the same label

together. However the supervised labeled groupings does not always reflect the unsu-

pervised grouping, where different clustering could be relevant.

3. Using numerical criterion: such as computing the intra/inter cluster energy. However

these criterion are based on subjective notion of what a good clustering is. In example,

well separated clusters is not always better than having overlapping clusters.

4. Using expert knowledge: a human expert can evaluate the relevance of a clustering

for a given task. If the expert can say if a clustering is relevant, it is more difficult to

quantitatively rate the clustering or saying if one clustering is better than the other.

In our context, we seek the clustering process that best approximates the human catego-

rization of a set of picture. We have at our disposal a manually categorized set of pictures.

Hence, we fall into the second approach for evaluating the quality of a clustering algorithm:

using labeled data (GT). The drawback of this quality measurement is the fact that labeled

groupings does not necessarily match unsupervised groupings which would still be rele-

vant. However, it is our goal here to find the unsupervised grouping which best approxi-

mates the manual one. This will be achieved by customizing the set of descriptors used to

characterize the images. When one wants to measure the quality of a partition according

to the known classes of the data, the classical quality measurements of a clustering are the

F-measure and Entropy. In section 2.5, we introduced the standard quality measures for

classification tasks: recall (equation 2.46), precision (2.47) and F-measure (2.48). Those met-

rics are build for binary classification tasks, where the answer to a query is either relevant or

irrelevant. In the case of clustering, we can generalize these metrics to sets.

Let us denote S = {S∞,S∈, . . . ,S ′K} the set of images categorized into K different cate-

gories. Those categories are given by a human expert and constitute the labeled data. Let us
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denote S ′ = {S ′1,S ′2, . . . ,S ′K} the categories obtained by the algorithmic run. We note |Si|
the cardinal of the set. We note Ni,k is the number of elements of category i that are found in

the cluster k. The generalized recall for a category i in a cluster k is given by equation 3.2:

R(i, k) =
Ni,k

|Si|
(3.2)

Likewise, the precision for category i in cluster k is given by equation 3.3:

P (i, k) =
Ni,k

|S ′k|
(3.3)

The generalized F-measure for sets is defined using the recall and precision measures as

given by equation 3.4:

F (i, k) =
(1 + β2)×R(i, k)× P (i, k)
(1 + β2)×R(i, k) + P (i, k)

(3.4)

The entropy of a cluster is defined with respect to the precision by equation 3.5:

E(k) = −
K
∑

i=1

P (i, k)× logP (i, k) (3.5)

An evaluation of the full partition is obtained by summing the max F-measure (equation

3.6) or the entropies (equation 3.7).

F (S ′) =
K
∑

i=1

|Si|
|S|

K
max
k=1

F (i, k) (3.6)

E(S ′) =
K
∑

k=1

|S ′k|
|S| × E(k) (3.7)

Hence, the best clustering is the one that maximizes (3.6) or that minimizes (3.7).

3.2.2 The assignment problem

3.2.2.1 Problem formulation

The assignment problem is a classic combinatorial optimization problem [23]. Consider a

set W (e.g. a set of workers) and a set T (e.g. tasks) of size N . Consider a cost-function

C : W × T → R
+. The best assignment is a bijection B of W and T that minimizes the

objective cost function: (3.8):

Cost =
N
∑

i=1

C(wi,B(wi)) (3.8)

The total number of possible assignments is N !, which is quickly intractable as N grows.
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3.2.2.2 The Hungarian algorithm

A polynomial-time optimal solution to this problem was formulated by Khun [93]. The

name of the algorithm comes from the fact that Khun was inspired by the earlier work of

Hungarian mathematicians.

Let us consider the problem formulated in a |W |×|T |matrix M where M(w, t) = C(w, t)

the cost of assigning task t to worker w. The best assignment problem can be solved using

the following steps:

1. If necessary, add dummy variables to the matrix so that |W | = |K|. Set the cost to this

dummy variables at least equal to the biggest assignement. Let k = min(|W |, |K|).

2. Substract the smallest element of each row of the matrix to all the elements in this row.

3. Find a zero element in the resulting matrix. Star this element if there is not an existing

starred zero in it’s row or column. Continue this procedure for all zeros.

4. Count the number of columns containing a starred zero. If it is equal to k, the starred

zeros contain the complete set of assignements which solves the problem.

5. Prime an uncovered zero. If there is a starred zero in the row containing the primed

zero, cover this row and uncover the column containing the starred zero. Continue

until all zeros are covered. Save the smallest uncovered value and go to step 7. If there

is not starred zero in the row containing the primed zero, go to next step.

6. Build a series of primed and starred zero: consider Z0 the uncovered primed zero

found in step 5. Z1 is the starred zero in the column of Z0(if it exists). Z2 is the primed

zero in the column of Z1. Continue the serie until Zi is a primed zero with no starred

zero in its column. Unstar the starred zero of the series, star the primed zeros of the

series, erase all primes and uncover every line in the matrix. Go to step 4.

7. Add the smalled element found in step 5 to every element belonging to a covered row,

and substract it to every element of an uncovered column. Return to step 5.

The assignments returned by the algorithm are identified by the starred zeros in the

matrix.

3.2.3 Experiments

We carried experiments using 2 image datasets provided by our industrial partners. The

first dataset, from FIAT, contained about 4000 images grouped into 4 different categories.

Images from category Front (1019 images) contained pictures of car exterior taken from the

front. Similarly are defined the pictures from the category Profile (1023 images). Images

from category Instrument Panel (747 images) are pictures from the whole dashboard. Fi-

nally in the category Cluster (name given by FIAT, 795 images) are images from the speed

and motor gauge. The dataset was split in two halves, one for training and one for test. The

second dataset, provided by RR, consists in images extracted from multimedia documents
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produced during engine damage investigation process. This dataset is very heterogeneous,

since no specific imaging condition is applied during the process. In this dataset, there was

no human categorization of the pictures. In order to evaluate our method, we submitted

the image dataset to RR experts so that they carry the grouping of images according to

their own expertise. In the meantime, non experts users were asked to do the same thing.

509 training images were grouped into 36 categories by RR experts, and into 49 categories

by non-experts. After the grouping of training images, 280 additional test images were as-

signed to the existing categories. Note that not all the defined categories were populated

with images from the test set. Hence, 20 out of the 36 expert categories contained at least one

image, and 31 out of the 49 non-expert categories.

We performed the search for an optimal hierarchical clustering model using the MPEG-7

descriptors EHD, CLD, CSD and SCD. We shorten down the exhaustive search by exam-

ining only the hierarchies that lead to well balanced trees. During the assignment problem,

we set the weights to the F1 between the ground truth and algorithmic clusters. The results

for FIAT dataset are reported in table 3.3 and in table 3.4 for RR dataset. We report in the

tables the percentage of correctly assigned images, after the link between the ground truth

categories and the automatically obtained clusters has been achieved using the Hungarian

algorithm.

Training Set Test set
0.56 0.53

Table 3.3: Percentage of correct classification on FIAT dataset

Training Set Test set
0.25 0.19

0.29 0.16

Table 3.4: Percentage of correct classification on RR dataset with expert categorization (1st

row), with non-expert categorization (2nd row)

The results shown in tables 3.3 and 3.4 show the difficulty of the task. For the FIAT
dataset, more than half of the images are correctly grouped together. The hierarchical model

built using the training images is able to sort the test images with almost the same accuracy

as the training images (56 and 53% respectively). For the RR dataset, we see that the task is

even more complex. Considering the training images, the model built according to expert

ground truth correctly classifies 25% of the images, and 29% according to the non-expert

ground truth. Those results drop to 19% and 16% respectively for the test images. The dis-

crepency of the results between obtained using the training and test images can be explained

by the fact that, unlike FIAT dataset, training and test images were quite different. Indeed,

a lot of groups defined in the expert or non expert ground truth with the training set remain

empty with the test set.
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3.2.4 Conclusion

The correspondence between a user-defined categorization and an algorithmically defined

grouping supposes a good corresponding separability in the description space. To achieve

this correspondance, we proposed a hierarchical decomposition of the dataset based on the

selection of different description spaces for splitting the different levels of the hierarchy. We

proposed to model the matching between the ground truth and the algorithmically obtained

clusters as an assignement problem, and explored the set of possible hierarchical decom-

positions of the dataset in order to retain the best one. Experiments have shown that it is

still difficult to approximate the user-defined ground truth. The background expertise and

analysis of experts reminds hard to approximate using purely visual descriptors.

However, we would like to push forward the method in future research. One interesting

path to investigate is to avoid the exhaustive search for the possible hierarchical decompo-

sitions. Indeed, the number of possible hierarchies becomes very large as the number of

user-defined categories and the number of visual descriptors increases. We will investigate

a solution taking the form of a greedy binary decomposition algorithm. Starting from the

initial dataset, we compute the 2-means clusterings using each of the available visual de-

scriptors. We evaluate these groupings and keep the one which achieves the best results. We

can then select the cluster to split and apply the same procedure, until the target number

of clusters is reached. This algorithm takes fully advantage of the proposed best-matching

evaluation method. Indeed, the algorithm is independant of the cost that are set up between

the groups. We can imagine to compute a cost function which varies with the current num-

ber of leaves in the hierarchical tree. Clearly, when the number of leaves is low, images from

different ground truth category will be in the same groups. Hence, the precision of the clus-

tering is also low but the evaluation should not penalize this. However, recall is important,

as we do not want images from the same category to be split over different clusters espe-

cially when there are just a few of them. As the number of clusters in the hierarchy grows,

precision becomes important. Hence, we could use the Fβ metric and adjust the β coefficient

with the number of clusters in the current decomposition to reflect those properties.

3.3 CBIR for specific imaging modalities

Methods for computing image similarities relying on general purpose visual descriptors

such as color and texture might not be accurate for specific imaging modalities. Indeed, in

some industrial processes, images are acquired by specific devices and computed from mea-

surements on these devices. This is not limited to industrial processes, but is also the case for

example in biomedical images, where there exists several imaging acquisition modalities.

The traditionnal CBIR approaches based on low level descriptors comparison might not

be relevant for this kind of modalities. Hence, particular descriptors and particular simi-

larities measures can be used to improve the retrieval quality. In the context of this Phd,

vibration images produced by the Rolls Royce Experimental Vibration Use Case are special

kind of images called Electronic Speckle Pattern Interferometry (ESPI) images. In this sec-

tion, we will detail the work that has been accomplished for this use case. First, we will
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detail the acquisition process and acquire some insights about the particular nature of ESPI

images (section 3.3.1). The notion of similarity in the context of vibration testing will be de-

fined. Due to the specific nature of ESPI, we propose a visual descriptor based on the Radon

transform (section 3.3.2). We introduce the mathematical background of the Radon trans-

form, the motivations underlying it’s usage in this context and the matching procedure that

we adopted for the proposed descriptor. In section 3.3.3, we describe a method for accurate

localization of the vibrating component in the ESPI image. Localizing the object is neces-

sary to ensure more robustness to affine transformations of the Radon Transform, and is a

challenging task for ESPI images. Finally, in section 3.3.4 we experiment our descriptor and

compare the results with an approach driven by local descriptors (SURF).

3.3.1 Electronic Speckle Pattern Interferometry

3.3.1.1 Principles

Electronic Speckle Pattern Interferometry is technique for recording and visualizing static

and dynamic displacement of components with optically rough surfaces. The main advan-

tages of this technique is it’s effectiveness in performing non desctructive tests of the surface

deformation of objects. This technique is commonly used for vibration, stress and strain

measurements in various industrial field. The optical arrangement for ESPI images acqui-

sition is shown in figure 3.51. When illuminated with a laser beam, objects with optically

rough surface are reflected as speckle patterns, a succession of dark and bright spots. The

speckle patterns are inherently induced by the internal structure of the object. They can be

seen as the fingerprint of the surface material of the object of study. When the object is sub-

mitted to a workload, it’s internal structure (or part of it’s internal structure) will move. By

substracting the speckle pattern of the initial object configuration (reference speckle) and the

current speckle pattern, correlation fringes appears that indicates the area of displacement

of the object (figure 3.61). The displacement can be measured in all 3-D directions. For the

interested readers, a book on the theory and practice of ESPI imaging was written by Jones

and Wykes [86]

3.3.1.2 Vibration testing using ESPI imaging

A vibration test consists in exciting the object of study at different frequencies in order to

discover its vibration modes. A vibration mode is characterized by a modal frequency and a

mode shape. A mode shape is a description of the expected curvature of the surface vibrating

at this particular mode. As opposed to correlation fringes which are obtain by substracting

speckle patterns, vibration mode shapes are directly observable in the ESPI images, as parts

of the object which vibrate will appear with a higher contrast speckle than part of the object

which do not vibrate (figure 3.71)

1Figures extracted from Wikipedia: http://en.wikipedia.org/wiki/Electronic_speckle_

pattern_interferometry, March 2010
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(a) Out-of-plane displacement (b) In-plane displacement

Figure 3.5: Optical arrangement to obtain ESPI fringes

Figure 3.6: ESPI fringes - flat plate rotated about a vertical axis - the fringes represents dis-

placement in the viewing direction; the difference in displacement between fringes is about

0.3 µm.
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Figure 3.7: ESPI fringes showing one of the vibration modes of a clamped square plate

3.3.1.3 Semantic of similarity for ESPI vibration images

During vibration tests, specific modeshape will appear at some frequency of excitation. The

appearance of some modeshape patterns gives the vibration engineers a hint about the re-

liability of the component. Some specific modeshape patterns appear only in component

showing a weakness in their internal structure. Usually, the recognition of such problematic

modeshapes relies on the expertise of skilled, senior engineers.

For vibration testing, the object is vibrated at a specific frequency. The parts of the object

which do not move will continue to be speckled. Depending on the vibration frequency,

parts of the object will speckle with high or low contrast. The particular configuration be-

tween the high contrast and low contrast speckles are visible on the image as fringes showing

specific mode. A mode is a particular configuration of the location of the fringes. Hence, the

semantic similarity between modeshape images as seen through the user point of view is the

similarity between the modeshape configurations, that is the number and relative location of

the fringes. Several challenges arise for solving this problem: first, the large amount of noise

due to the imaging process makes preprocessing steps such as image segmentation very in-

accurate. Second, traditionnal low level descriptors such as texture and colors are useless for

such kind of images. Third, it is important to localize, among the noisy image, the patterns

formed by the vibrating part of the component. Thus, we propose an alternative low level

description of the image content based on the Radon transform, and an associated similarity
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measure.

3.3.2 ESPI image descriptor based on the Radon Transform

3.3.2.1 The Radon Transform

The Radon Transform [160] is a technique traditionally used in Computer Tomography for

the reconstruction of images from their integral projections. We are not concerned with

reconstruction of images but with the direct application of the Radon transform, for image

description purpose. The Radon transform is the integral of a two-dimensional function

f(x, y) over straight lines. Equation 3.9 gives the expression of the Radon transform over

a line positioned by ρ –the smallest distance from the line to the origin– and θ –the angle

between the horizontal axis and the perpendicular to the line–.

Rf (ρ, θ) =

+∞
∫∫

−∞

f(x, y)δ(x cos(θ) + y sin(θ)− ρ)dxdy (3.9)

where δ is the Dirac delta function.

From the definition of the Radon transform, we can derive the following mathematical

properties [41, 158] that link transformations of the image plane with transformations in the

Radon domain:

1. Translation: a translation of f(x, y) by a vector ~u = (x0, y0) leads to a the modified

Radon Transform R(ρ− x0cos(θ)− y0 sin(θ), θ)

2. Rotation: Rotation of f by an angle θ0 leads to R(ρ, θ + θ0)

3. Symmetry: R(ρ, θ) = R(−ρ, θ ± π)

4. Periodicity: R(ρ, θ) = R(ρ, θ ± 2π)

5. Scale: a scaling of f by a factor α 6= 0 leads to 1
|α|R(αρ, θ)

In a CBIR application, it is necessary to ensure robustness to affine transformation of the

image, illumination changes, etc. An appropriate similarity measure has to be found that

could cope with the aforementionned properties. In the following sections, we present the

advantages of the Radon transform when dealing with ESPI images. Then, we propose a

computation of a similarity score between images in the Radon domain. We will show the

effectiveness of our approach in real data.

3.3.2.2 Motivations

The main domain of application of the Radon transform since its formalization by Johan

Radon in 1917 [137] is computer tomography. Tomography images such as CT-Scans are di-

rectly acquired in the Radon domain, and the inverse Radon Transform needs to be applied

to reconstruct 2D images and 3D volumes [61]. Nevertheless, the Radon Transform has also
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been studied and successfully applied in other contexts. Benois-Pineau et al. [17] have pro-

posed an approach to video structuring and indexing based on 1D image representation in

videos. Based on the discrete Mojette Radon Transform [69], they propose an estimation of

the motion in the 1D domain and a color signature of video shots. Classical video indexing

operations such as shot change detection and scene grouping can be performed in the 1D

domain, reducing drastically the computationnal burden. In addition, they proposed a con-

cept of 1D spatio-temporal mosaicing which allows the definition of a spatio-temporal color

signature. An application of the Radon Transform for CBIR was proposed by Tabbone and

Wendling [158]. In this method, the author characterize objects using the R-signature, which

is computed from the Radon Transform according to equation 3.10.

Rs(θ) = R2(ρ, θ)dρ (3.10)

The R-signature can be thought intuitively as the repartition of the energy of the shape for

the different orientations. Based on the mathematical properties of the Radon Transform,

the R-signature is theoretically invariant to affine transformations. Experimental validation

has been provided by the authors in their publication. A method to extend the R-signature

to grayscale and color images is also given. Seo et al. have proposed robust fingerprinting

system based on the Radon transform [148]. Fingerprinting is the process of identifying mul-

timedia content using a fixed small number of bits. This process is similar to cryptographic

hashing. However, cryptographic hashing functions cannot be applied directly to multi-

media content: a single bit change in the content of a file will lead to completely different

cryptographic key. However, it is common that multimedia objects can be modified with-

out changing their perceptual meaning, e.g. due to compression, affine transformations, etc.

Hence, fingerprinting functions must invariant under perceptual similarities, while very dif-

ferent for perceptually different objects. Seo et al. rely on the mathematical properties of the

Radon transform to propose one such function, which is invariant to affine transformations.

In the context of ESPI image similarity search, the use of the Radon transform yields

several advantages. First, it is obvious that descriptors based on colour are not applicable

to this modality. Similarly, descriptors based on texture are not relevant, since they will

more likely capture the speckled aspect of the surface. Moreover, the important feature for

modeshape similarity is the location and geometric arrangement of the fringes. Descriptors

based on the shape of the fringes could provide the most useful information. However,

shape descriptors requires an initial segmentation, which is not trivial with such images.

The Radon Transform enables to capture such geometric shape information, without the

need of a segmentation. This is illustrated in figure 3.8. On each line, we see two example

images of component which vibration exhibits a specific modeshape pattern. The white

rectangle on the top left of the images hides the vibration frequency that is displayed in

the original image. On the left of each image, we display two curves. The green curve is

the 1D cut profile of the image extracted along the vertical line in the middle of the image,

that is the grey level values of the pixels of the image that go through this line. The line

itself is highlighted in white. The red curve correspond to the integral projection of the

image on the vertical axis, i.e. a single projection of the Radon Transform on the vertical
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axis. Similarly, we display below each image the 1D horizontal cut profile and 1D integral

projection along the horizontal axis. The shape of the object is characterised by the intensity

distribution over the different projections. As illustrated in figure 3.8, the vertical integral

projection is quite similar for all the images with a large hill in the center of the blade and

a slowly decreasing slope with some minor bumps on each side of the main hill, toward

the edges of the component. However, the horizontal integral projection is quite different

for the two modeshapes. It looks like a large plateau starting from the left border of the

component, followed by a slowly increasing slope and a small plateau on the right of the

component (figures 3.8(a) and 3.8(b)) for the images of the first line. For the images of the

second line, it looks like a large valley delimited by two clear hills on the left and the right

of the component. These profiles indeed reflects well the modeshape pattern, where two

vibrating regions appear as darker oscillations in the first modeshape, one above the other,

while there are 4 such oscillations in the modeshape of the images of the second line.

An important feature of the Radon Transform for ESPI images is that the integration of

the 2D signal over 1D projections performs a strong low pass filtering, hence reducing the

effect of speckle noise. This is clearly depicted in figure 3.8, where the green lines corre-

sponding to real pixel values are very noisy with a sawtooth aspect while the red lines are

smooth.

3.3.2.3 Similarity measure

The previous section have shown the advantages of applying the Radon transform in the

context of ESPI images. In order to achieve the goal of ESPI image similarity search, we

must define a similarity measure in the Radon domain. Let us consider two images f(x, y)

and g(x, y), Rf (ρ, θ), Rg(ρ, θ) their Radon transform with respect to the parameters ρ, θ. We

propose to measure the similarity between two projections with their normalized cross cor-

relation coefficient (equation 3.11):

γu(Rf , Rg) =

∑

x[Rf (x)− R̄f ][Rg(x− u)− R̄g]
√

∑

x[Rf (x)− R̄f ]2[Rg(x− u)− R̄g]2
(3.11)

The correlation coefficient is a statistical measure of the similarity between two signals.

The experimental setup to acquire the ESPI images lead to a controlled environment for

capturing the image. Each image contain a single, centered object (see figure 3.8). All the

images have the same resolution (640x480 pixels), and we set an equal size for each radial

projection, equal to the size of the diagonal of the image, with zero padding if necessary.

Hence, we can compute a single value of the correlation coefficient γu=0, without shifting

the signals. Let us consider the discretization of the (ρ, θ) plane with δρ and δθ steps, ρ ∈
[0, ρmax], θ ∈ [0, π]. If we consider that the Radon transform is computed along N sampled

directions of projection, θn = θ0 + n∆θ, n = 0, . . . , N − 1 the similarity between two images

f(x, y), g(x, y) is given by equation 3.12:

S(f, g) =
1

N

N−1
∑

n=0

γ(Rf (ρ, θn), Rg(ρ, θn)) (3.12)
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(a) (b)

(c) (d)

Figure 3.8: Examples of ESPI images. The first line shows two different components which

vibrate at a specific modeshape, the second line shows another modeshape. The green line

on the left (resp. below) each image is the 1D vertical (resp. horizontal) cut profile extracted

along the white vertical (resp. horizontal) line. The red line is the integral projection of the

image along the vertical (resp. horizontal) axis.
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Let us examine the robustness of the similarity measure proposed in equation 3.12 with

respect to different transformations.

• Rotation: The formula given in equation 3.12 does not consider rotations of the object.

In the dataset, due to the constraints inherent to the image acquisition technique, there

is no need to compensate for rotations of the object. Nevertheless, according to the

mathematical properties of the Radon transform, a rotation of angle θ0 in the image

plane leads to a shift of the radial projections in the Radon domain. Hence, if we con-

sider the set of possible permutations Π of the projections, we can reformulate equation

3.12 as:

S(f, g) = max
Π

{ 1

N

N−1
∑

n=0

γ(RΠ
f (ρ, θn), Rg(ρ, θn))

}

(3.13)

The maximal similarity measure is obtained for the permutation which compensate the

rotation of the image. The coarseness of rotation compensation is then proportionnal

to the number of radial projections computed.

• Brightness: when computing the normalized cross correlation coefficient (cf equation

3.11), the images are normalized, by substracting their mean and dividing by their

standard deviation. This ensure robustness with respect to a uniform change in the

brightness due to varying illumination conditions.

• Translation: The effects of translation on the radial projections is a shift of the signal

by a quantity proportional to the translation vector. The normalized cross correlation

function is obtained by applying equation 3.11 with a shift of one of the signals. Again,

translations can be compensated by retaining the global maximum of the γu value, as

was proposed by Benois-Pineau to estimate the motion of video sequences from the

Radon domain [17]. However as we said earlier on, we do not compute γ for the full

signal range, but we consider that the signals are already registered. As the object is not

always perfectly aligned with the center of the image, we propose a method to localize

the center of the component. The Radon transform is computed using the object center

as the reference point by which the radial projections go through, hence registering the

signals with respect to translations.

3.3.3 Object center localisation

Due to the specific nature of ESPI images, it is difficult to obtain a reliable segmentation from

the image. The high quantity of speckle noise, the low contrast in particular in the most

interesting regions (e.g. the vibrating regions), the fact that some structures which are not

part of the component of interest appear in the image are examples of challenges for image

segmentation. However, as stated above, it would be interesting to compute the Radon

transform with respect to the center of the component as a reference point. An easy way to

obtain such information would be that the operator manually localize the component center

in the image when acquiring the image. Compared to the set up of the experimental protocol

to obtain ESPI images, the additionnal burden is insignificant. These information could be
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written in metadata about the experiment, that would be efficiently processed within the

context of the XMedia project. However, this is only possible for future experiments. One

important aspect of the RR EV use case is to take advantage of the processing of historical

knowledge, which is currently stored as sets of images from experiments, and based on the

experience of skilled engineers. We propose an algorithm for localizing the component of

interest from the images that take advantage of the redundancy of information we can get

from historical data. Indeed, the set up for the lab experiments for vibration testing is the

following:

1. Choose a component to test

2. Set up the ESPI acquisition system

3. Get the component to vibrate to an increasing frequency

4. Save the images obtained for every reasonance frequency.

Hence, there exists several images of the same component vibrating at different frequencies.

It is important to recall that the component stay at the same position during it’s whole test-

ing. We take advantage of all these images to compute an average image of the component.

Inspired by the moving object segmentation techniques in videos [31], we propose a fore-

ground/background mask of the image by computing the difference between a particular

instance image of the component and it’s average image. Since for each image, only a por-

tion of the component correspond to its vibrating part (i.e. it’s foreground), we obtain a more

complete mask of the whole component by adding (i.e. bitwise AND operation) each sep-

arate mask. Hence, we obtain a foreground/background mask for each component, where

the foreground part correspond to the component of interest. The algorithm for computing

such a mask is detailed in algorithm 1.

Algorithm 1 Algorithm for Component Localization from ESPI images

1: BinaryImage : COMPONENT_LOCALIZATION(images I)

2: Image averageImage = 1
sizeof(Images)

∑

I Images(i) (figure 3.9(b))

3: BinaryImage mask = 0

4: for all Image Img ∈ Images do

5: BinaryImage thisMask =

{

0 if |Img −AverageImage| < T

1 otherwise
(figure 3.9(c))

6: MORPHO_OPEN(thisMask)

7: mask = mask ∨ thisMask

8: end for
9: MORPHO_OPEN(MORPHO_CLOSE(mask)) (figure 3.9(e))

10: return mask

Let us detail algorithm 1 with the illustrations of figure 3.9. Line 1 is the name of the

algorithm. It takes as parameters a set of images I from the same component. It returns a

binary image corresponding to a foreground/background segmentation of this component
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(see figure 3.9(e)). In figure 3.9(a) we show one of the image of the set I. As we can see, a

large part of the image is occupied by the supporting structure which is not part of the com-

ponent itself. In line 2 of the algorithm, we compute the average image by simply computing

the average pixel value over the set I for each pixel. The average image for the component of

figure 3.9(a) is given in figure 3.9(b). It is possible from this image to localize the component

border more clearly than in the original image where the vibrating parts on the left edge of

the component appear with verly low contrast. In line 3, we initialize an empty binary image

mask. Then, for all images in the set (line 4), we proceed to compute a binary mask (line 5).

This is done by computing the pixelwise absolute difference between the original image and

the average image. If this difference is larger than a threshold T , the pixel is considered as

foreground, otherwise, it is set to background. The result of this operation is illustrated in

figure 3.9(c). We set the threshold to T = 10. As we can see, this segmentation is very noisy,

with a lot of speckles appearing in particular in the visible structures which are not part of

the component. The vibrating part of the component are highlighted by much more dense,

white area. To get rid of these isolated white pixels, we perform a simple morphological

opening with a rectangular structuring element of size 3×3. The result of the morphological

filtering is shown in figure 3.9(d). Figure 3.9(d) hence corresponds to the fg/bg mask com-

puted with a single instance image of this specific component. The global mask is obtained

by computing the binary OR operation with all the masks hence obtained. We perform a

morphological closing of the final mask in order to reconnect the possibly disconnected part

of the component and a morphological opening to get rid of small isolated regions (figure

3.9(e)). Once the mask is obtained, there can exist several connected components. Typically,

in figure 3.9(e) there is a white rectangle in the top left hand corner corresponding to the area

where the vibration frequency is written. We assume that the area corresponding to the ac-

tual component localization is the one occupied by the biggest connected component in the

mask. In figure 3.9(f), we outline in green the localization of the component hence obtained

as the convex hull of the biggest foreground region.

3.3.4 Experimentations

3.3.4.1 Keypoint-based similarity score

In order to assess to performance of our descriptor with respect to keypoint based descrip-

tors, we compared it with a baseline interest-point based image matching comparison using

SURF points [15]. We set up the SURF descriptors to 64 dimensions, and the distance be-

tween SURF descriptors is the euclidean distance between the feature vectors.

We compute a similarity score between image Ia and Ib as follows: let us note Ka and Kb

the respective keypoints of Ia and Ib, and Ka,b the set of matching pair of keypoints whose

definition will be given below. Then, the similarity score S(Ia, Ib) is computed as the ratio

of the number of keypoints in Ia that can be matched with keypoints from Ib by the total

number of keypoints of Ia. This is given by equation 3.14:

S(Ia, Ib) =
|Ka,b|
|Ka|

(3.14)
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(a) Original Image (b) Average Image

(c) Foreground/Background segmentation (d) Morphological filter of fg/bg

(e) Final Fg/Bg mask (f) Component Localization

Figure 3.9: Illustration of ESPI images component localization
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Note that the similarity score is not symmetric, i.e. S(Ia, Ib) 6= S(Ib, Ib) if |setKb| 6= |setKb|.
The set of matching keypoints Ka,b is computed according to equation 3.15:

Ka,b = {(ki ∈ Ka, kj ∈ Kb)|L2(ki, kj) < 0.6× L2(ki, kl) ∈ Kb}with

L2(ki, kj) ≤ L2(ki, km)∀km ∈ Kb, and

L2(ki, kl) ≤ L2(ki, km)∀km ∈ Kb, km 6= kj} (3.15)

Equation 3.15 state that a pair of keypoint (ki, kj) is a match if the distance between ki and kj
is sufficiently smaller than the distance to the second closest neighboor of ki. This condition

was formulated by Lowe to identify robust matches among SIFT keypoints [103], and is also

applicable to SURF keypoints.

3.3.4.2 Dataset and experimentation protocol

Our dataset consists of 1309 ESPI images of vibration tests given by our industrial part-

ners. The database has been split into 213 folders containing images of component showing

a specific modeshape. This classification has been done under the supervision of skilled

vibration engineers from RR. The categories are heterogeneous in terms of the number of

representative per category, the most populated folders having 102 images while 52 out of

213 categories had only 1 image. In all the experiments, we computed the MAP score by

querying the sytem with every image in the database. For a specific query, the system com-

putes the similarity score of all the images with respect to the query and returns the list of

images sorted by decreasing similarity. We tested four different systems:

1. SURF: Keypoint-based similarity score as described above

2. Radon Full: the descriptor is the Radon transform of the full image, with respect to the

image center.

3. Radon Blade Center: the descriptor is the Radon transform of the full image, with

respect to the automatically computed component center.

4. Radon Segmented: the descriptor is the Radon transform of the segmented image, that

is only the pixels which are part of the automatically extracted component mask are

taken into account, the other pixels beeing set to zero.

For all Radon system, the similarity score is the one given in equation 3.12. We set the

number of radial projections in the Radon transform to 10, and the angles of projections are

uniformally sampled starting with an angle of 0.

3.3.4.3 Results and discussion

The MAP scores obtained by the different systems are reported in table 3.5. We reported the

total MAP scores and the MAP score for the 50 most populated categories. Figure 3.10 shows

the average precision per category for the 50 most populated categories in the dataset. The
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System Name Total MAP score MAP score for the 50 most populated categories

SURF 0.225 0.139

Radon Full 0.468 0.365

Radon Blade Center 0.428 0.327

Radon Segmented 0.469 0.372

Table 3.5: MAP scores for the different CBIR systems run on the ESPI image dataset

first noticeable fact from figure 3.10 is the fact that any of the systems based on the Radon

transform outperform the results obtained with SURF keypoints. As expected, although

keypoint-based descriptors are pushing the state-of-the-art in a lot of computer vision re-

lated applications [83], they are not applicable in the case of this dataset. The low contrast

and the high quantity of noise makes the localization of interest points difficult, and leads to

poor matching results. This confirms our conviction that specific features have to be chosen

for specific image type.

Concerning the differences between the systems based on the Radon transform, it seems

that the Radon Transform computed with respect to the center of the blade performs slightly

lower than the other systems. The Radon transform computed on the segmented compo-

nents performs almost the same than the Radon computed on the whole image, but the

benefits of segmentation are slightly higher when comparing the scores for the most pop-

ulated categories (0.372 to 0.365). However, we note that the average precision scores with

segmentation seems to be more sensitive than without segmentation, in the sense that for

some categories the increase in performances is substantial while it performs the worst of all

Radon-Based methods for some others. A closer look at the results per category shows that

the decrease in results is most often due to an incorrect segmentation, where the object of

interest was misdetected. This can happen when the assumption that the biggest connected

component of the mask is the object is false. On the countrary, the biggest increase in results

are obtained for categories in which the images show different component with a substan-

tial part of background visible in the image. When segmented, this background structure

is discarded leading to more robust results. In our publication about this method [170], we

led experiments using a reduced dataset of 593 images with a manual segmentation. The

results showed that the Radon transform computed with respect to the object center per-

formed slightly better than the Radon transform computed with respect to the image cen-

ter. The Radon transform computed using the (manually) segmented components showed

a substantial improvement over the other methods. Hence, we assume here that the im-

provement brought by the segmentation could be much more beneficial on this dataset with

a better automatic segmentation. As stated earlier on, a robust segmentation of the blade

could be acquired manually when performing vibration tests and used in our algorithm,

without much additionnal burden for the user. Another benefits of the segmentation is the

fact that the computationnal burden is lowered, both when computing the Radon transform

and when computing the similarity measure.



70 Chapter 3 – Indexing and organizing image database through global descriptors

Figure 3.10: Average Precision Scores for the 50 most populated categories for the different

CBIR systems.

3.4 Conclusion

In this chapter, we have proposed three approaches whose common background is in the

application of global image descriptors for different image management task in the context

of industrial processes.

In the first section, we proposed an indexing scheme of an image database that handles a

part of the inherent problem of the definition of similarity for a user, which is always context-

dependant. A multidimensional clustering index is computed using multiple clustering of the

image database with different visual descriptors. Experiments showed that ranked retrieval

results on this index, despite the coarse ranking of images using the hamming distance, out-

performs a PCA based descriptor of the same dimensionality. Moreover, we demonstrated

that this index is suitable for range queries, where a set of image potentially relevant to the

query can be quickly retrieved. A finer ranking of the set can be performed using a more

appropriate distance measure.

In the second section, we investigated the ambitious problem of approximating a user-

defined grouping of images using clustering algorithms. We model this process using a

hierarchical decomposition of the dataset, where the splitting decisions at the different lev-

els of the hierarchy are taken according to different sets of visual descriptors. We performed

a brute force scanning of the possible hierarchies, and evaluated those models using an eval-

uation method based on solving the assignment problem.

Finally, in the third section, we proposed an approach that was closely linked to the
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RR Experimental Vibration use case of the X-MEDIA project. The very specific nature of

the images handled in this use case makes traditionnal color and texture visual descriptors

useless. We proposed a descriptor based on the Radon transform of the images that filter

out the high quantity of noise present in the images while keeping information about their

main structures. We proposed a similarity matching measurement using this descriptor and

showed experimentally that the results were better than using a keypoint-based matching

approach.
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Chapter 4

Local Image Analysis

4.1 Introduction

In this chapter, we will focus on another problematic formulated the context of this PhD, that

is the accurate localization (or extraction) and recognition (or categorization) of specific ob-

ject classes within images. The object detection and categorization aims to extract two kinds

of information from the images: which objects are present in the image and where exactly

are those objects located. The detection is closely linked to the task of object segmentation.

One of the difficulties of object segmentation is to extract complex, highly structured objects

composed of regions visually dissimilar. On the other hand, the recognition of objects is

affected by several problems: low quality of images, partial occlusions, visually heteroge-

neous object categories, cluttered background, . . . Many research efforts have been carried

in the task of global image recognition such as scene classification [150, 64, 131], but object

recognition remains a challenge. This task is even more ambitious when multiple objects are

present in the images.

One of the earliest work closely linked to the object detection and recognition topic was

proposed by Duygulu et al. [49]. In this work, the authors address the recognition problem

as the process of attaching words to image segments considering the task as a translation

between one language (English words) to another (visual words, or blobs). A mapping be-

tween the keywords and the visual blobs is performed using a method based on Expectation

Maximization. The rest of the literature [72, 151, 168, 62, 9] noticeably differs from the origi-

nal work by Duygulu et al. in the sense that the models built try to exploit the maximum of

information that can be extracted from the image: not only low level features (color, texture,

etc.), but also local contextual relationships between pixels or image segments, location and

even global relevance estimates. He et al. [72] proposed a pixel-wise labelling into a finite set

of labels using a multiscale conditional random field formulation(mCRF). The mCRF com-
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bines the output of a local pixel-wise classification, a representation of the local geometric

relationships between the objects and global label features into a probabilistic framework,

trained using supervised labeled image data. Shotton et al. [151] introduced a new approach

for learning a discriminative model of object classes based on texture, layout and context

information. Their model is based on texture-layout filters, a feature which jointly model pat-

terns of texture and their spatial layout. Texture layout filters are combined with lower level

image features (color, location) into a Conditional Random Field to provide a high-level dis-

criminative model. They also discuss an efficient learning method of the CRF parameters

based on boosting and piecewise training method. Verbeek and Triggs [168] point out that

Markov Random Field and aspect models such as Probabilistic Latent Semantic Analysis

and Latent Dirichlet Allocation are complementary methods which attempt to improve the

coherence of the labellin of image patches. MRF provides crisper local labelling by exploit-

ing neighbourhood-level couplings while PLSA and LDA use global relevance estimates.

They studied two spatial extensions of the aspect models, one based on a forest of minimal

spanning trees and the other one on a regular 8-neighbor MRF. Galleguillos et al. [62] have

shown that introducing contextual information about the co-occurrences and the relative lo-

cation of image regions with local appearance-based features improves the global labelling.

Athanasiadis et al. [9] define a framework for simultaneous image segmentation and ob-

ject labelling operating at the semantic level. They represent the contextual information as

an ontological taxonomy of the set of possible semantic labels and employ fuzzy algebra to

adjust the labelling of the regions given by region growing segmentation algorithms.

In this chapter, in order to build models for the recognition of object classes under dif-

ferent conditions, we have relied on supervised classification and more precisely Support

Vector Machine (SVM) classifiers. In section 4.2, we will introduce elements of the theory

underlying this classification model. Then, we propose two different approaches of the prob-

lem. In section 4.3, we adopt a region-of-insterest (ROI) based framework. ROI are identified

in the image as potential localization of an instance of the object. Then, a classifier is used

to determine the presence or absence of the object in the ROI. We applied this procedure for

the concrete task of air-duct detection within car images.

In section 4.4, we face the problem of multi-class object detection and localization using

image segmentation. Unlike the ROI approach, the image is fully segmented and each region

is submitted to a classifier. Several approaches are proposed to improve the region classifi-

cation results based on the global coherence of the labelling and the late fusion of multiple

segmentation/detection results.

4.2 Introduction to Support Vector Machines

4.2.1 Supervised Learning Theory

Since the emergence of computer science, man has been interested in transfering it’s ability

to learn to machine. Machine learning has been considered as a central topic in Artificial

Intelligence since it’s creation [113, 114, 42]. However, although one could agree on the

common understanding of the concept of learning, it’s formal content remained fuzzy. A
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consensual definition of learning usually involves a learner having some computationnal

capabilities, an object to learn, a protocol defining how the object to learn is presented to

the learner and a criterion of success which state when the said object is learnt [28]. It is

then necessary to answer the question: what is learning? Learning is the process of adapting

some parameters to obtain the desired answer to an input or a stimulus.

4.2.1.1 Inductive Inference Principle

Learning methods aim to identify object classes using object specific characteristics (fea-

tures), and a chosen protocol. Learning methods are applicable to a high number of human

activities and are suitable for automatic decision making processes [38]. A straightforward

approach consists in building expert systems, where the expert knowledge is described as a

set of rules applied to classify new data [125, 161]. The efficiency of the learning system

is highly depedent on the ability to correctly extract and describe expert rules. In this sec-

tion, we consider that the learning/classification procedure is extracted automatically from

a set of training examples. A training example consists in the description of a specific case,

along with it’s corresponding classification (ground truth). Given a set of training examples,

a learning system must be able to compute a classification procedure able to classify some

given test examples. The process of computing a generic classification model according to

a set of training examples is known as inductive inference. Given the training samples, the

aim is to infer a classification procedure that minimizes the classification error. Not only the

classification procedure must classify correctly the training samples, but also it should pre-

dict correctly previously unknown samples. Hence, it is essential that the training process is

accurate enough to be able to learn, but should prevent over-learning.

4.2.1.2 Statistical Learning Theory of Vladimir Vapnik

We present here the theory of statistical learning that was formalized by Vapnik [164, 165]

and it’s concrete application to classification using Support Vector Machines.

In supervised learning, we assume that there exists a finite training base D = {xi, yi},
where xi ∈ R

n are independantly drawn training vectors according to a fixed but unknown

probability density p(x). Each training vector x is assigned a label y according to the law

p(x, y) again fixed but unknown. The training base D of size m constituted of m couples of

observations that are independant and identically distributed (i.i.d.) according to the joint

probability law p(x, y) = p(x)p(y|x) can hence be formalized as in equation 4.1.

D = (x1, y1), (x2, y2), . . . , (xm, ym) ∈ R
n × {±1} (4.1)

The dimensionnality of the training vectors x corresponds to the dimension of the feature

space that will be used to capture the object characteristics. The choice of the labels {±1} is

arbitrary but refers to the binary classfication problem. The goal of the learning process is to

find a function f belonging to the set of functions f(x, α), α ∈ Λ where Λ represent a set of

abstract parameters, that classify correctly unknow examples (x, y) that is f(x) = y for (x, y)

drawn from the same probability distribution function p(x, y). As already stated, a good
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training function, i.e. a function that correctly classify the training set S does not necessarily

implies that the function generalizes well, i.e. a function that classifies correctly test samples

that were not used for training. In order to find the best function that approximates the

supervisor answer, a cost function is introduced between the superviser answer y and the

learning system answer f(x, α). Hence, the functionnal risk R(α) is defined as in equation

4.2.

R(α) =

∫

L(y, f(x, α))dP (x, y) (4.2)

P (x, y) is the probability of (x, y) Hence, the problem can be formulated as finding the

function f(x, α0) that minimizes the functionnal risk R(α). In the case of binary classifi-

cation where the supervisor answer can only take two values y = {±1} or y = {0, 1},
{f(x, α), α ∈ Λ} is the set of indicator functions, and the associated cost function is defined

as equation 4.3

L(y, f(x, α)) =

{

0 if y = f(x, α)

1 otherwise
(4.3)

The function expressed in equation 4.2 determines the probability of the answers given by

the supervisor and the function f(x, α), and is called the classification error. Since one only

knows the training base, while the functionnal risk R(α) is expressed as a function of the

unknown probability distribution P (x, y), the following inductive principle is applied:

• The functionnal risk R(α) is replaced by the empirical risk Remp(α)(equation 4.4),

which can be computed from the training set.

Remp(α) =
1

m

m
∑

i=1

L(y, f(xi, α)) (4.4)

• To estimate the function f(x, α0) which minimizes the empirical risk (4.4), we seek to

minimize the number of training errors — minimisation of empirical risk principle —.

In The Nature of Statistical Learning Theory [164], Vapnik studies the necessary conditions

for a learning process based on the minimization of the empirical risk to be relevant, and

establish a theory to build machine learning algorithms. As a direct application of the theory,

he establishes a new statistical learning algorithm, the Support Vector Machines.

4.2.1.3 Support Vector Machines

Support Vector Machines is a statistical learning algorithm that rely on a simple geometri-

cal approach: finding the hyperplane that best separates the positive and negative training

samples. Support Vector machines have first appeared in publications related to vision such

as optical character recognition [164, 22], and have soon been extended to a high number of

other domains such as face detection [27, 128], text categorization [85], tracking [26, 10], etc.
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Figure 4.1: Illustration of the concept of optimal separating hyperplanes: H3 is not a sepa-

rating hyperplane (it does not separate correctly the two classes). H1 and H2 are separating

hyperplanes, H1 separate the classes with a small margin, H2 separate the classes with the

largest margin, hence beeing the optimal separating hyperplane.

Linearly separable data Consider the training set S = {(xi, yi)} ∈ R
n × {±1}, i ∈

{1, . . . ,m} of linearly separable elements. A separating hyperplane is an hyperplane sat-

isfying the following condition:

yi(w.xi + b) ≥ 1, ∀i ∈ {1, . . . ,m} (4.5)

The distance d(w, b,x) from a point x and the hyperplane (w, b) is given by:

d(w, b,x) =
|w.x+ b|
‖w‖ (4.6)

Definition 4.2.1. The optimal hyperplane is the separating hyperplane located at the maximal dis-

tance from the closest training vectors xi belonging to two different subspaces. It is said that the

optimal hyperplane maximizes the margin.

The optimal hyperplane is given by maximizing the margin M(w, b), under the con-

straints of equation 4.5. This is illustrated by figure 4.1, where several hyperplanes are

shown, but H2 is the maximum margin separating hyperplane. The margin M(w, b) is given

by:

M(w, b) = min
xi,yi=−1

d(w, b,xi) + min
xi,yi=1

d(w, b,xi)

= min
xi,yi=−1

|w.xi+b|
‖w‖ + min

xi,yi=1

|w.xi+b|
‖w‖

=
minxi,yi=−1|w.xi+b|+minxi,yi=1|w.xi+b|

‖w‖

= 2
‖w‖
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Figure 4.2: The support vectors are those samples which are located on the margin of the

optimal separating hyperplane

The larger the margin is, the smaller the expected error. Maximizing the margin is then

equivalent to minimise ‖w‖2 under the constraints of equation 4.5:

Minimise Φ(w) = 1
2 ‖w‖

2

with yi(w.xi + b) ≥ 1, ∀i ∈ {1, . . . ,m} (4.7)

The problem of constrained optimisation can be solved using the Lagrangian formulation

(equation 4.8).

L(w, b, λ) =
1

2
‖w‖2 −

m
∑

i=1

λi(yi(w.xi + b)− 1) (4.8)

The solution (w̄, b̄) is located at a saddle point of the Lagrangian, which must be max-

imised with respect to the multipliers λi, and minimised with respect to w and b.

Definition 4.2.2. The support vectors are the vectors xi of the training set S that verify the equality

λi[yi(w̄.xi + b̄− 1] = 0, that is the points which lie the closest to the optimal hyperplane.

An illustration of definition 4.2.2 is given in figure 4.2. The examples that do not lie on

the hyperplane boundary are useless in the computation of the solution. Their constraints

are automatically satisfied since their corresponding coefficients λi = 0. This implies an

enhanced generalization capability of the optimal hyperplanes.

Hence, the dual of the Lagrangian can be expressed as [22]:

Maximize W (λ) =
∑m

i=1 λi − 1
2

∑

i,j=1 λiλjyiyj(xi.xj)

respecting λi ≥ 0∀i = 1, . . . ,m

and
∑m

i=1 λiyi = 0

(4.9)
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The saddle point solution is found by maximizing the quadratic optimisation problemW (λ).

The solution gives the equation of the optimal hyperplan:

m
∑

i=1

λ̄iyi(w̄.xi) + b̄, with b̄ = −1

2
[(w̄.sv+1) + (w̄.sv−1)] (4.10)

where sv+1 and sv−1 are the support vectors respectively on the positive and negative side

of the hyperplane.

Non linearly separable data When the input data are not linearly separable, it is possible

to reformulate equation 4.5 introducing positive slack variables ξi:

yi(w.xi + b) ≥ 1− ξi, ξi ≥ 0∀i ∈ {1, . . . ,m} (4.11)

The soft-margin SVM [39] allows misclassified examples by choosing a hyperplane that splits

the training examples as cleanly as possible while still maximising the marging between

cleanly separated examples. The ξi give a bound for the allowable error. Following the new

constraints, we seek to minimize:

Minimise Φ(w) = 1
2 ‖w‖

2 + C
∑m

i=1 ξi
with yi(w.xi + b) ≥ 1− ξi, ∀i ∈ {1, . . . ,m}
and ξi ≥ 0∀i ∈ {1, . . . ,m}

(4.12)

The solution can be found using the same process as with the linear case, by maximising

the dual of the Lagrangian of function 4.9. Only the constraints changes, for that 0 ≤ λi ≤
C, ∀i ∈ {1, . . . ,m}. C is a user defined parameter that allow to adjust the fitting of the

decision function.

The Kernel Trick The support vector machines yield accurate results when the data are

linearly separable and the soft maring formulation allows more robustness with respect to

the presence of outliers. However, it is more likely that real data is not linearly separable

in practice. It is hence desirable to find a non linear hypersurface that would separate the

positive and negative examples. However, parameterizing such an hypersurface quickly

becomes intractable.

Guyon et al. [71] propose to map the original description space into a higher dimension-

nal feature space, also called the descriptor space. Let us note Φ : Rn → H the function

that achieves such a mapping, with H the higher dimensional space. It is then possible to

find the optimal hypersurface in the augmented descriptor space, using the standard lin-

ear algorithm. Since the mapping function might not be linear, the projected hyperplane

hence obtained might not be linear in the initial feature space. However, computing the

dot product in the descriptor space can become quickly inefficient. However, the explicit

computation can be avoided by the use of the kernel trick. The idea originally proposed by

Aizerman et al. [3] is to replace every dot product by a non-linear kernel function K(x,y):

Φ(x).Φ(y) = K(x,y) (4.13)
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K(x,y) is a symetric function satisfying the Mercer conditions:

∫

K(x,x′)ψ(x)ψ(x′)dxdx′ ≥ 0 for any function ψ such that

∫

ψ2(x)dx <∞ (4.14)

In the case of non linearly separable data, the optimal separating hyperplane is obtained by

replacing the dot products of the input vectors (x.y) by their equivalent in the high dimen-

sional descriptor space K(x,y). The quadratic form to minimize becomes

W (λ) =
m
∑

i=1

λi −
1

2

∑

i,j=1

λiλjyiyjK(xi,xj), 0 ≤ λi ≤ C∀i ∈ 1, . . . ,m (4.15)

Finally, the non linear decision function can be expressed as:

f(x) = sign
[

N
∑

i=1

λiyiK(x,xi) + b
]

(4.16)

where N is the number of support vectors, xi and yi are respectively the ith support vector

and it’s label and λi is a constant learned during the training.

Several functions satify the Mercer conditions. Here are the kernel functions commonly

used with SVM:

• Polynomial:
KP d(x,y) = [(x.y) + 1]d, d ≥ 2 (4.17)

• Gaussian:
KG(x,y) = exp−

‖x−y‖

2σ2 (4.18)

• Sigmoid:
KTh(x,y) = tanh(Cx.y − σ) (4.19)

with C a constant to ensure the Mercer conditions are satisfied.

• Triangular:
KT (x,y) = −‖x− y‖ (4.20)

4.3 Regions-of-Interest Based Classification

4.3.1 Introduction

We will focus in this section on the detection and localisation of objects within regions-of-

interest. This particular work finds it’s root in the FIAT CSF use case that was described in

section 1.1.1.1. One of the requirements in this use case is the ability to detect and classify

specific car components in the images. Unless specifically shot in close captions, such com-

ponents usually occupy only a small part of the image. It is then necessary not only to detect

those images that contain the object of interest, but also to localize which part of the image

the object lies in.
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4.3.2 Generic Methodology

This work was accomplished in the X-MEDIA project as part of the broad project framework,

which collect collect evidences accross different media: images, text and raw data. Within the

X-MEDIA framework, the so-called knowledge extraction tools use a common infrastructure to

enable the sharing and reuse of knowledge among different components. The user ontology
defines the view of the industrial process in terms of object entities and the relationships

between them. Other partners of the project were directly involved in the creation and use

of the ontology for complex knowledge management. We limit our view of the ontology as a

list of the object classes that can be recognized and localized in images. Hence, our problem

is:

1. To propose algorithms for the candidate localisation of objects of interest (ROI detec-

tion).

2. To propose efficient models for the recognition of objects inside the ROI (supervised

learning).

The generic methodology proposed for image analysis in X-MEDIA is depicted in figure

4.3 [11]. This methodology defines the different steps of image analysis in terms of processes

and potential applications. The main pipeline for image analysis is illustrated by the arrows

going from the input image to the knowledge base. Every blue box represents a processing

module. The straightforward processing pipeline is composed of the following modules:

• Preprocessing: this step could include any kind (and combination) of pre-processing

algorithm such as filtering, denoising, etc. Image segmentation and ROI detection are

also considered as pre-processing steps, which enables local image analysis.

• Feature Extraction: this step corresponds to the computation of image features (i.e.

visual descriptors such as the one described in chapter 2). It follows preprocessing

since features could be extracted on image regions, on the global image, on filtered

images, etc.

• Classification: this step corresponds to the computation of models for the recognition

of specific object classes. The models are computed using the features extracted in the

previous step.

• Concept detection: In this step, the models built from the previous steps are used

to extract knowledge from unknown images. As illustrated in figure 4.3, this step is

linked with a double arrow to the knowledge base: the concept detection module pop-

ulate the knowledge base with instances of object classes found in the images, while

the knowlege base defines the particular object classes that have to be recognized (the

one defined in the user ontology).

Two additionnal processing modules are depicted as side of the main pipeline:
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Figure 4.3: Diagram of the XMedia Generic Methodology for Image Analysis

• Invariant Salient Point Detection: this step corresponds to the localization of salient

point in the images, used for the computation of local interest point descriptors such

as SIFT and SURF.

• Measurement of geometry: this steps correspond to the computation of particular

features linked to the geometry of the segmented regions.

In a generic scenario, there is a feedback loop between concept detection and the previous

tasks with a view to refining initial decisions or, complementarily, to repeating the same

process at finer granularity. For instance, after detecting that an image illustrates the interior

of a car, the system may proceed in detecting more detailed objects such as steering wheel,

pedals, seats, etc. Orthogonally, in case of low confidence in the initial labelling, additional

features may be taken into account, or different classifiers may be applied, or the segmenta-
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tion may be revised.

In figure 4.3, some applications relying on the output of the processing modules are

shown as orange-filled circles. This includes the applications we have described in chap-

ter 3 and the one we will decribe in chapter 5. Semantic annotation is another application,

where the semantics of images is extracted using the concept detection module. Semantic

queries such as give me all pictures representing dashboards can be performed. Since semantics

can be extracted from compound documents using other technologies (such as knowledge

extraction from text), queries that go beyond the semantics extracted from images can be

performed. Rule evaluation is another possible application where the geometry of partic-

ular components can be used to apply rules and infer more knowledge. However this was

out of the scope of this PhD.

In this section, we will focuse on the instantiation of the framework for the task of air

duct detection in car images. Air duct detection is achieved using a straightforward instanti-

ation of the framework, where the different process to apply are sequantially: ROI detection,

feature extraction, model training and SVM classification. The contributions in this section

span several of the process of the methodology.

• An original ROI extraction algorithm has been proposed, where detection of lines is

achieved using the Hough Transform and extraction of candidate regions in an unsu-

pervised manner is carried using DBScan clustering algorithm.

• We proposed to rely on the MPEG-7 Edge Histogram descriptor as the underlying

feature space for air-duct classification and have experimentally validated this choice.

• Concerning the classification algorithm, we have used SVM classifier and proposed to

enhance the classification results relying on the boosting paradigm.

• Finally, we provide an evaluation of our framework. In this evaluation, we test the

efficiency of the system as a whole but also the influence of the ROI extraction method

on the overall efficiency.

4.3.3 ROI extraction

The goal of the ROI extraction is to provide a set of candidate regions that are likely to contain

the object of interest. As such, the frontier between the ROI extraction and the classification

algorithm becomes shallow, since localizing ROI could be considered as recognizing instances

of the object. On the countrary, regions of the image not detected by the ROI extraction

algorithm will never been considered for further processing, hence resulting in a missed

detection. The ROI detection algorithm has to favor a high recall, while the classification

algorithm will be in charge of discarding non relevant regions hence improving the precision

of the whole chain. In the context of airduct detection, we propose to rely on a specific

ROI detection algorithm based on the visual appearance of this component. Generic ROI

detection algorithms exists such as the work of Kapsalas et al. [88]

Air duct in cars can have all kind of shapes and sizes. The most common characteristics

between different air ducts is that they are covered by a grid. We propose to localize the



84 Chapter 4 – Local Image Analysis

candidate regions as the one which have a high density of parallel lines. This is achieved in

three steps: first, image contours are extracted using Canny-Deriche edge detection algo-

rithm [44]. Then, we perform the detection of lines in the image using the Hough Transform

algorithm [47]. Finally, we extract regions of high density of parallel lines using the DB-

SCan clustering algorithm [51]. In the next sections, we describe in more details the Hough

transform. DBScan clustering as already been presented in section 2.4. We will then give the

detailed procedure of our ROI detection algorithm.

4.3.3.1 Line Detection using Hough Transform

Figure 4.4: Parametrization of straight lines using polar coordinates

The Hough transform was originally formulated by Paul Hough [76, 77]. Several publi-

cations on the topic have been proposed and even compared [80].

A binary image can be considered as a set of characteristic points. Taking into acount only

the information about the point localizations, one lacks information about their geometric

organisation, possibly into meaningful shapes. The Hough transform enables the task of

finding geometrical primitives (such as lines and curves) into a problem of finding a maxima

in a parameterized space. A generalized version of the Hough Transform was formulated

by Duda and Hart for line detection [47].

Consider the equation of a line as expressed by it’s polar coordinates ρ = x cos θ+y sin(θ),

where ρ represents the distance between the line and the origin and θ is the angle from the

origin to the closest point (figure 4.4). This parameter space is better suited than the tradi-

tionnal y = ax+b since the parameters a, b can be unbounded while ρ, θ are finite parameters.

In this parameter space ρ, θ, a point p(x, y) is regarded as a constraint of the straight lines

on which the point may be located. In the parameter space, we can draw a point for every

couple ρ, θ that yields a line which go through p. The set of points hence obtained draws

a sinusoid in the ρ, θ space, as illustrated in figure 4.5. Every point yields a vote for sev-

eral possible straight lines. When the points are aligned in the image space, the sinusoids

corresponding to each point in the parameter space cross at a common point ρ̄, θ̄, which

correspond to the parameters of the straight line containing all the points. Hence, the detec-
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Figure 4.5: Correspondance between points in the image and sinusoids in the accumulator

space. Each point potentially holds a number of straight lines going through it, with varying

ρ, θ. The line going through both points is caracterized by the equation found at the location

of the crossing sinusoids in the parameter space.

tion of straight lines using the Hough transform is achieved in two stages: first, the candidate

straight lines are collected into the parameter space, also called the accumulator space. Then,

the accumulator space is examined in order to find local maxima, corresponding to straight

lines in the image.

4.3.3.2 ROI extraction algorithm in details

The main steps of the ROI extraction algorithms have been given in paragraph 4.3.3.

In this section, we introduce the detailed step of the whole ROI extraction algorithm. The

pseudo-code for the algorithm is given in algorithm 2. To illustrate the algorithm, we give

in figure 4.6 the detailed output of each step of the algorithm applied on the image given in

figure 4.6(a).

• In line 2, the procedure CANNY extracts the edges of the image. This is illustrated in

figure 4.6(b) where the edges are outlined in white.

• In line 3, line segments are computed in the Hough parameter space. The extracted

segments are drawn in red in figure 4.6(b).

• In line 4, we start a processing loop for all segment orientations. We uniformally quan-

tize the orientations [0, π] into 12 different bins. We process all the segments that fall in

the same quantization level (condition line 6).

• In line 7, we call the subroutine SAMPLE_POINTS_FROM_SEGMENT to initialize a

list of points. The subroutine compute points regularly sampled on the segment at a
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Algorithm 2 Algorithm for ROI Extraction

1: ROI_EXTRACTION(Image img, double ǫ, int T )

2: Edge_img = CANNY(img)

3: Segments = HOUGH(Edge_img);

4: for all Orientation O ∈ [0, π] do
5: for all Segment S ∈ Segments do
6: if ORIENTATION(S) == O then
7: Points← SAMPLE_POINTS_FROM_SEGMENT(S, ǫ);

8: end if
9: end for

10: Clusters = DBSCAN(Points, ǫ, T )

11: for all Clusters C do
12: ROIS← COMPUTE_BOUNDING_BOX(C)

13: end for
14: end for

distance slightly lower than the threshold ǫ. This is illustrated in figure 4.6(c), where

the green points are the points sampled on the segment lines extracted previously.

Hence, we initialize a dataset of 2D points to be clustered at the sampled points ex-

tracted from (almost)parallel segment lines.

• In line 8, we run the DBScan algorithm to automatically discover the zones of high

density of points.

• In lines 11/12, we compute the bounding box of each cluster discovered by DBScan,

that is the rectangle which contains the whole set of points beeing member of a same

cluster according to DBScan. We illustrate this step in figures 4.6(d) and 4.6(e) for

different orientations. The points belonging to a common cluster are drawn with the

same color, and the bounding boxes aroung each cluster are depicted as red rectangles.

These bounding rectangles will form the candidate Regions-Of-Interest that will be

submitted to the SVM classifiers.

4.3.4 Classification

4.3.4.1 Feature Extraction

The choice of the descriptor space is based on the knowledge of the appearance of the object

of interest. In the case of air duct, we should use a descriptor able to capture the characteris-

tics of a grid, while beeing quite robust to the changes in shapes. We have used the MPEG-7

EHD for it’s inherent capability of capturing the orientation of edges, foreseen as an interest-

ing discriminant feature. Then, following the processing pipeline, the EHD is computed for

every ROI given by the ROI extraction algorithm. The discrimination between positive (e.g.

the ROI actually containing air ducts) and negative examples will be achieved by the SVM.

As a preliminary study of the EHD, we computed a training and test set of ROI. The positive
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(a) Original Image (b) Edge Detection and Hough Transform

(c) Sampling points on detected lines



ERROR: ioerror
OFFENDING COMMAND: image

STACK:

(
PPOOPPPPPQRRQPPPPPQRSSSTRRSSSSRRTVVTRTXZXWVVVWXYWZ[ZYZ[[]]]]^]\[_^_a___‘a‘aaabaaa‘_‘abbbdedbbdghdeeeggfciijjihggkiggggfefffffggghghgdZOIMRUWWYX[ZZXVWX[\\\[[Z[]_]_abbcdeffedccddbcccbbbcccbaaabbdddcbcddcbacdcdedbbefgfghgfefffggfefhhfdbcgiigggdfffhiihjjihhhikcdhiiikkkkhhmolmpnmlkjklkkklllkkjghkljikkjjkllkkmmmmnppmllmnnmmljknhhh˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚�����������������������������������������yxwxwx|{xx{y|~|zzz{{||zz{zxxy}}}|~�~~|||~}~~}~~~~}||}~~}}}}{|}~~~~�}~����}z{{zy|��}~���}~~|~~~~~~��}����������}}��~����}}�����~��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������hmnmnmopoqrxz���������������������������������|vpjkkllonopnmov����������������������������������������������������zjd{}~~��}�����wcSPVpv}�}}�����������������������������vkpxuwyywwxyxyxwxxxxwwvwxxxtqkf‘[YUOJLOPPPOPNLLMNNNOOOONNNNNNLLLNPQPNNOPQRRSSTUUVZ[]]YYYY[\\][ZZ]^]]^Z\]]\[[\YXY[\]\Z\[ZZ\\\[[[\[ZZZ[YYZZZZYYYYYYYXXXVUSRQQRSSSRRSRQQSSTTUUVVVVUUWY\^\[ZYYXVUVWVSSTTSTTTTTTTTUVWWWWXYWWXXXY[\[ZZYYZ[]][YWXYZZ[ZYYWTTVXXWVUUTTWVVUTTTTQQPONNPQLLMMMLLKLMLJIJIHKLMNPRTUUUUUVVWWTTTSRQQQRSTTTSTUSSRQRRTURVWZ]\Z]bfmptuuttttuwxyyxwwxxxxwxxuzyrpo�������������������������}xutsrqh_O<8G_pw{wpnru{����������������������������������������������������������}tonljlgbcc‘__YYYZ[\__cb‘acfhjhijklnpqonqsvwww|}}�~zvv}������������������������������������������������������~����������������������������������������������������������������~��������������~����������������~}}}~���������������~~���~}}~�~}}}}}}}|{}��}|}|{{|��~~��}}}~��}|~~~|{{{|}{{|�~~����~{{z{z||||||}|z{}~|{|�~}||{|{||||||}}{{{{{|}~~~������������������������������ £⁄¢££ ������������������������������������������������������������������������¡���������������������������������������������������������������������������������������������������������������}xspprsuvrtw~���}rnjjllllkjjkkkjikjiiijjkiihhhhiiiijjjjiihhijihhghiiihhiiiihiiigfihgffgffhhhhgggffghhgfghfghggffgedccdddcfedeggedeeefgfeddddddeefddefffeefeddddeeeeeeefeeccccdddcbbccccdeddeeddefdeecdfgegfffijkkljghfeddbbbbc‘^ZTOKJLKMLHHIJGGGHFFHHHHII
)
-filestream- 
-mark- 
-savelevel- 


