Synthèses et études de nouveaux matériaux magnétiques et photomagnétiques

par Rodica Gutium Ababei

Thèse de doctorat en Physico-Chimie de la Matière Condensée

Sous la direction de Marc Fourmigué et de Rodolphe Clérac.

Soutenue le 30-03-2011

à Bordeaux 1 , dans le cadre de École doctorale des sciences chimiques (Talence, Gironde) , en partenariat avec Centre de Recherche Paul Pascal (Pessac) (laboratoire) .

Le jury était composé de Corine Mathonière, Philippe Richetti.

Les rapporteurs étaient Dominique Luneau, Mihail Revenco.


  • Résumé

    Le développement récent de l’électronique exige la mise au point de composants de plus en plus efficaces, de plus en plus rapides et de plus en plus réduits en taille. Dès les années 1970, il a été montré que l'on pourrait utiliser la molécule comme composante électronique élémentaire. Dans ce domaine, le chimiste sait aujourd’hui créer des molécules douées de propriétés remarquables, comme par exemple les molécules-aimants et les chaines-aimants qui montrent une bistabilité magnétique à basse température (T < 10 K) liée à la relaxation lente de leur aimantation, leur conférant ainsi la capacité de conserver l’information. Dans ce contexte, l’idée d’organiser des molécules-aimants par des connecteurs moléculaires photocommutables permet à la fois d’ajouter une propriété magnétique supplémentaire au matériau, mais également de photo-contrôler la bistabilité magnétique de ces objets. Dans ces travaux de thèse, nous nous sommes intéressés à l’association de molécules-aimants avec deux types de liens : les complexes à transfert de charge Na2[Fe(CN)5NO] et à conversion de spin [Fe(LN5)(CN)2] et [Fe(LN3O2)(CN)2] (LN5 et LN3O2 étant des ligands pentadentes) dans le but de photo-contrôler les propriétés magnétiques. Les résultats obtenus dans la partie dédiée à l’organisation des complexes [MnIII(BS)]+ via le précurseur photo-actif nitroprussiate se sont révélés décevants du point de vue photomagnétisme. Toutefois, un des nouveaux composés 2D présente un comportement magnétique de type molécule-aimant. La stratégie de connecter les précurseurs de [MnIII(BS)]+par des complexes photomagnétiques [Fe(LN3O2)(CN)2] et [Fe(LN5)(CN)2] pour synthétiser de nouveaux systèmes photosensibles a porté ces fruits puisque neuf nouveaux systèmes ont été synthétisés. Permi les résultats les plus significatifs, nous avons obtenu un système unidimensionnel dans lequel les unité dimères [MnIII2(BS)2]2+ sont connectées par l’entité photomagnétique et qui présente un comportement de molécule-aimant. On retiendra aussi un autre système unidimentionnel qui présente un ordre antiferromagnétique et de la relaxation lente de l’aimantation. D’autre part, les études photomagnétiques ont clairement montré des comportements photoinduits pour les cinq composés qui contiennent les centres FeII à l’état bas spin. Pour conclure, le développement de notre stratégie est prometteur pour la création de nouveaux matériaux photomagnétiques dans les années à venir.


  • Résumé

    The exponential growth of technological demands for information storage capacity is at the origin of the nanosciences and the development of the molecular electronics. Since more than 40 years, the main objective in this field of research is mainly to store as fast as possible more information in a smaller volume. Nowadays, chemists know how to create molecules with remarkable properties, such as Single–Molecule Magnets (SMMs) and Single–Chain Magnets (SCMs), which show magnetic bistability at low temperature (T < 10 K) providing a memory effect. Therefore, the design of novel materials with original physical properties, based on molecular magnetic objects, became the focus of many researches around the world. Following this approach, the design of SMM linked by active bridges that can switch between two magnetic states under external stimuli (temperature, pressure, light...), should favor additional properties and allow an external control (by irradiation) of the magnetic properties of the final SMM-based materials. The goal of this thesis is to organize SMMs by assembling them with two types of linkers: electron-transfer building blocks (Na2[Fe(CN)5NO]) and spin-crossover complexes ([Fe(LN5)(CN)2] and [Fe(LN3O2)(CN)2]). Three new materials obtained from the organization of [MnIII(BS)]+ complexes with the [Fe(CN)5NO]2- building-block, showed no significant photoactivity unlike the Na2[Fe(CN)5NO] precursor. Nevertheless, one of these organized systems exhibits Single-Molecule Magnet behaviour. The employed strategy to link [MnIII(BS)]+ units with photomagnetic [Fe(LN5)(CN)2] and [Fe(LN3O2)(CN)2] spin-crossover complexes, leads to nine new interesting compounds. The most significant novelty from a structural point of view is the various topologies of compounds obtained from molecular complexes to one-dimensional architectures with different arrangements. All compounds exhibit interesting magnetic properties. For example, one of the unidimensional networks shows an antiferromagnetic order followed by a slow relaxation of the magnetization that has been observed for the first time in a canted system. On the other hand, magnetic investigations under light irradiation have revealed remarkable photoinduced properties in the case of five systems based on FeII units in their low spin state. In conclusion, the synthetic strategy used in this thesis has been experimentally validated and opens new perspectives for future photomagnetic SMM and SCM systems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.