Thèse soutenue

Analyse mathématique de quelques modèles en calcul de structures électroniques et homogénéisation
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Arnaud Anantharaman
Direction : Eric Cancès
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et applications des mathématiques
Date : Soutenance le 16/11/2010
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne)
Jury : Examinateurs / Examinatrices : Eric Cancès, Grégoire Allaire, Habib Ammari, Xavier Blanc, Isabelle Terrasse
Rapporteurs / Rapporteuses : Guillaume Bal, Maria Esteban

Résumé

FR  |  
EN

Cette thèse comporte deux volets distincts. Le premier, qui fait l'objet du chapitre 2, porte sur les modèles mathématiques en calcul de structures électroniques, et consiste plus particulièrement en l'étude des modèles de type Kohn-Sham avec fonctionnelles d'échange-corrélation LDA et GGA. Nous prouvons, pour un système moléculaire neutre ou chargé positivement, que le modèle Kohn-Sham LDA étendu admet un minimiseur, et que le modèle Kohn-Sham GGA pour un système contenant deux électrons admet un minimiseur. Le second volet de la thèse traite de problématiques diverses en homogénéisation. Dans les chapitres 3 et 4, nous nous intéressons à un modèle de matériau aléatoire dans lequel un matériau périodique est perturbé de manière stochastique. Nous proposons plusieurs approches, certaines rigoureuses et d'autres heuristiques, pour calculer au second ordre en la perturbation le comportement homogénéisé de ce matériau de manière purement déterministe. Les tests numériques effectués montrent que ces approches sont plus efficaces que l'approche stochastique directe. Le chapitre 5 est consacré aux couches limites en homogénéisation périodique, et vise notamment, dans le cadre parabolique, à comprendre comment prendre en compte les conditions aux limites et initiale, et comment corriger en conséquence le développement à deux échelles sur lequel repose classiquement l'homogénéisation, pour obtenir des estimations d'erreur dans des espaces fonctionnels adéquats