Thèse soutenue

Modélisation numérique de plaques et de coques composites à l'aide d'une approche au sens de Reissner-Mindlin enrichie pour les problèmes mécanique et piézo-mécanique

FR
Auteur / Autrice : Mehdi Ben thaier
Direction : Olivier Polit
Type : Thèse de doctorat
Discipline(s) : Mécanique, génie mécanique, génie civil
Date : Soutenance le 23/02/2010
Etablissement(s) : Paris 10 en cotutelle avec Dipartimento interateneo territorio del Politecnico e dell'Università (Turin, Italie)
Ecole(s) doctorale(s) : École doctorale Connaissance, langage, modélisation (Nanterre)
Jury : Président / Présidente : Joël Pouget
Examinateurs / Examinatrices : Olivier Polit, Joël Pouget, El Mostafa Daya, Sergio De Rosa, Philippe Vidal, Michele D'Ottavio, Erasmo Carrera
Rapporteurs / Rapporteuses : El Mostafa Daya, Sergio De Rosa

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Ce travail concerne le développement d’un outil numérique pour résoudre des problèmes de plaques et de coques mécaniques et piézo-électriques multicouches. En d’autres termes, nous développons des éléments finis basés sur le modèle de Reissner-Mindlin pour l’analyse des problèmes mécaniques et piézoélectriques de plaques et de coques multicouches. Cet outil doit être le moins coûteux en termes de degrés de liberté, simple à utiliser pour modéliser le problème, sans aucune pathologie numérique classique et satisfaisant :vitesse de convergence et efficacité.Dans le domaine des éléments finis, il existe une théorie appelée La « théorie des déformations du cisaillement du premier ordre »(FSDT), utilisée pour résoudre des problèmes purement mécanique prenant en compte l’effet des contraintes en cisaillement transverse. Dans cette théorie, cinq degrés de liberté (trois translations et deux rotations), sont à chercher.Prenant en compte l’hypothèse d’une approximation du déplacement au niveau de la surface moyenne, en utilisant la loi constitutive 2D.Dans ce travail, nous présentons l’extension piézoélectrique de cette théorie pour des éléments finis quadratiques à huit nœuds pour résoudre des problèmes de plaques et de coques multicouches. En effet, la nouveauté dans ce travail est celle de considérer une loi constitutive 3D afin de calculer non seulement le déplacement transversal au niveau du plan moyen de chaque couche mais aussi les déplacements transversaux en surface supérieure et en surface inférieure de chaque couche. Cette approximation de l’épaisseur fait intervenir deux nouveaux degrés de liberté, qui seront très importants dans l’étude des plaques et des coques épaisses et semi épaisses.Le déplacement mécanique est approximé en utilisant une approche Equivalent Single Layer(ESL) et le potentiel électrique est , quant à lui, approximé par une approche LayerWise (LW).Cette évolution est proposée afin d’acquérir un bon compromis entre le minimum de degrés de liberté et le maximum d’efficacité. D’une part, l’approximation par élément fini pour le potentiel électrique, respectant les coordonnées de l’épaisseur est représenté par une variation linéaire au niveau de chaque couche. D’autres part ce potentiel est constant par élément en chaque interface, ce qui réduit le nombre d’inconnus pour la recherche du potentiel électrique résultant. Plusieurs tests numériques sont présentés dans le but d’évaluer les éléments mécanique et piézoélectrique de plaque PQ8P7 et PQ8P7PZ et de coque CQ8P8 et CQ8P8PZ ainsi que leurs capacités de résoudre les problèmes physiques auxquels ils sont dédiés, en comparant nos résultats aux solutions de référence.