Thèse soutenue

= Etude des mécanismes de frittage SPS de nanopoudres d’alumina alpha (α-Al2O3)

FR  |  
EN
Auteur / Autrice : Yann Aman
Direction : Vincent GarnierElisabeth Djurado
Type : Thèse de doctorat
Discipline(s) : Génie des matériaux
Date : Soutenance en 2010
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : MATEIS - Matériaux : Ingénierie et Science - UMR 5510 (Rhône) - Laboratoire d'électrochimie et de physicochimie des matériaux et des interfaces (Grenoble1995-....)

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

L‘intérêt technologique que présentent les matériaux nanostructurés a permis l‘émergence au cours de ces dernières années du procédé de frittage flash « SPS » (Spark Plasma Sintering). A l‘origine de ce procédé, il a été supposé par ses inventeurs que l‘application d‘un courant pulsé puisse générer une décharge plasma entre les particules du matériau pulvérulent, favorisant ainsi la création de ponts à des températures faibles et accélérant les phénomènes de diffusion de matière à l‘origine de la densification à basse température. Cette hypothèse de l‘existence de plasma ou de quelconque autre effet SPS n‘a jamais été vérifiée, bien que les possibilités offertes par le SPS soient avérées. L‘objectif de cette thèse a été d‘étudier les mécanismes de frittage SPS de nanopoudres d‘alumine alpha. L‘alumine polycristalline alpha, matériau céramique modèle largement étudié dans le frittage traditionnel, possède d‘excellentes propriétés mécaniques et optiques quand la densité du matériau fritté est proche de sa valeur théorique, et que la taille de grain est submicronique. Dans un premier temps, du point de vue appliqué, cette étude a permis de caractériser, grâce à des outils statistiques puissants, l‘influence de la combinaison d‘un grand nombre de paramètres SPS (taux de chauffage, température, durée de palier) ainsi que de la mise en forme du compact cru sur l‘évolution de la densité et de la taille de grains au cours du frittage, et ses conséquences sur les propriétés optiques. Ceci a permis l‘obtention d‘alumine polycristalline de translucidité élevée. Dans un second temps, du point de vue fondamental, l‘objectif a été d‘élucider les mécanismes physico-chimiques intervenant sur les cinétiques de densification et grossissement de grain. Il a ainsi été démontré, grâce à des analyses microstructurales par microscopie électronique, que les chemins de frittage sont influencés par la vitesse de chauffage, et que la densification à basse température est guidée par des mécanismes rapides de diffusion aux joints de grains. Tandis qu‘à haute température, la densification semble contrôlée par des mécanismes lents de diffusion tels que la diffusion en volume et le glissement au joint de grain. Des analyses dilatométriques ont permis de mettre en évidence l‘influence de la nature des pulses de courant sur le développement microstructural au cours du frittage. Des analyses spectroscopiques de temps de vie de positrons ont permis de caractériser la concentration en défauts ponctuels en fonction du taux de chauffage. Enfin, l‘effet du courant pulsé sur le mécanisme de création des ponts au stade initial du frittage SPS a pu être caractérisé.