Thèse soutenue

Microstructure, oxydation et propriétés mécaniques d’alliages intermétalliques à base de TiAl

FR  |  
EN
Auteur / Autrice : Paul Ervé Tchoupe Ngnekou
Direction : Jacques LacazeBernard Viguier
Type : Thèse de doctorat
Discipline(s) : Sciences et Génie des Matériaux
Date : Soutenance le 29/04/2010
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux (Toulouse ; 1999-....)

Résumé

FR  |  
EN

Deux nouveaux alliages à base de TiAl (le Ti-46Al-8Nb et le Ti-46Al-8Ta) développés dans le cadre du projet européen IMPRESS pour des applications dans les turbines aéronautiques de Rolls Royce plc. ont été étudiés au cours de ce travail de thèse. Ils ont été caractérisés du point de vue de leur microstructure, leur résistance à l'oxydation et leurs propriétés mécaniques en traction. La microstructure dite convolutée mise en œuvre lors des traitements thermiques effectués par différents partenaires du projet a été caractérisée par microscopie optique, microscopie électronique à balayage et en transmission. A la différence de la microstructure lamellaire classique dont les lamelles d'un même grain sont orientées dans la même direction, les grains convolutés possèdent plusieurs orientations des colonies de lamelles. Ces orientations multiples ont été attribuées aux orientations possibles des plans de la phase gamma (obtenue après transformation massive) sur lesquelles la phase a2 est susceptible de précipiter et de croître. Le comportement à l'oxydation isotherme de ces alliages a été étudié à 700°C sous air et il a été montré que les cinétiques d'oxydation de l'alliage au Nb sont inférieures à celles de l'alliage au tantale, traduisant ainsi le fait que le Nb confère davantage plus de résistance à l'oxydation que le Ta. La structure de la couche d'oxyde au bout de 50 h est faite de deux sous-couches dans le cas de l'alliage au Nb : une sous couche externe riche en alumine amorphe et une sous-couche interne constituée d'alumine amorphe renfermant de nombreuses petites cristallites de rutile. L'alliage au Nb présente 2 sous couches : une sous couche externe d'oxyde amorphe riche en aluminium et une sous couche interne d'oxyde amorphe renfermant des cristallites de rutile. Au bout de 1000 h d'oxydation, la composition et la structure des couches d'oxyde ont complètement changé. L'oxyde est complètement cristallisé et se présente sous forme de deux sous-couches dans le cas de l'alliage au Nb. Quant à l'alliage au tantale, l'on a 3 ou 4 sous couches selon que l'oxyde se soit formé à partir des lamelles de la phase g ou de la phase a2. La sous-couche externe reste continue et uniforme, et est constituée par de l'alumine gamma. Ensuite on a une sous-couche également continue de rutile. Les deux sous-couches se mélangent sur une épaisseur d'environ 20 à 30 nm et forment ainsi une zone d'oxydes mixtes de rutile et d'alumine. En revanche, dans le cas de l'oxydation des lamelles de la phase a2, une quatrième couche de rutile est présente en dessous de la couche d'oxyde mixte. Dans tous les cas, l'interface entre l'oxyde et le substrat est faite d'une couche continue de nitrures de titane après 1000 h d'oxydation. Ces nitrures sont très localisés après les temps d'oxydation courts (50 h). L'influence de la température et de la vitesse de déformation sur les propriétés mécaniques en traction a été étudiée, et il a été relevé que plusieurs modes de rupture présents dans la plage de température étudiée (25-900°C). Pour la vitesse de 10-4s-1, en dessous de 750°C la rupture est fragile et à partir de 800°C elle est ductile. Le domaine de transition ductile fragile a été donc établi entre 750 et 800°C pour cette gamme de vitesse de déformation. A vitesse de déformation plus faible (10-5s-1), les ductilités obtenues sont accrues et l'on atteint près de 1% de déformation à température ambiante. Il a été montré qu'indépendant du pré-traitement subi, la déformation plastique est complètement perdue. Cette perte de ductilité a été attribuée à la formation des précipités riches en Ta présents aux joints de grains et aux joints de lamelles des deux phases en présence. Lesdits précipités se forment par décomposition de la phase a2 et du rejet du Ta aux joints de grains et aux interfaces inter-lamellaires lors du maintien à 700°C.