A study on the expressive power of some fragments of the modal µ-calculus

par Alessandro Facchini

Thèse de doctorat en Informatique

Sous la direction de Igor Walukiewicz et de Jacques Duparc.

Le président du jury était Yves Pigneur.

Le jury était composé de Benoît Garbinato, Erich Grädel, Gerhard Jäger, Marc Zeitoun.

Les rapporteurs étaient Damian Niwinski, Johan van Benthem.


  • Résumé

    Dans ce travail nous étudions la complexité de certains fragments du mu-calcul selon deux points de vue: l’un syntaxique et l’autre topologique. Dans la première partie nous adoptons le point de vue syntaxique afin d'étudier le comportement du mu-calcul sur des classes restreintes de modèles. Parmi d'autres résultats, nous montrons en particulier que sur les modèles transitifs toute propriété définissable par une formule du mu-calcul est définissable par une formule sans alternance de points fixes. Pour ce qui concerne la perspective topologique, nous montrons d'abord que sur les modèles transitifs la logique modale correspond au fragment borélien du mu-calcul. Ensuite nous donnons une description effective des hiérarchies de Borel et de Wadge d'un sous-fragment sans alternance de cette logique sur les arbres binaires et vérifions que pour ce fragment les points de vue topologique et syntaxique coïncident.


  • Résumé

    In this work we study the complexity of some fragments of the modal mu-calculus from two points of view: the syntactical and the topological. In the first part of the dissertation we adopt the syntactical point of view in order to study the behavior of this formalism on some restricted classes of models. Among other results, we show that on transitive transition systems, every mu-formula is logically equivalent to an alternation free formula. For what concerns the topological point of view, we first prove that on transitive models, the modal logic is exactly the Borel fragment of the modal mu-calculus. Then we provide an effective description of the Borel and Wadge hierarchies of a sub-fragment of the alternation free fragment of the mu-calculus on binary trees. Finally we verify that for this fragment the syntactical point of view and topological point of view coincide.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.