Reduction of elliptic curves

par Huajun Lu

Thèse de doctorat en Mathématiques et informatique. Mathématiques pures

Sous la direction de Qing Liu.

  • Titre traduit

    Réduction de courbes elliptiques


  • Résumé

    Soit E une courbe elliptique sur un corps de valuation discrètecomplet K à corps résiduel algbriquement clos. Alors E a réduction semi-stable surune extension minimale L/K, galoisienne de groupe de Galois G. Soient O_{K} , O_{L} les anneaux de valuations respectives de K et L, et X , X' les modèles réguliers minimaux de E sur O_{K} et O_{L} respectivement.Premièrement nous montrons que pour tout entier naturel n, la fibre fermée infinitésimale X_{n} est déterminée par l'action du groupe G sur X'_{n+l} pour unentier naturel l assez grand (ne dépendant que du discriminant de L/K sile type de réduction de E n'est pas I*_{r} ). Deuxiémement, nous classifions àisomorphisme près la fibre fermée X_{0} en tant que courbe sur le corps résiduelde K, lorsque la caractéristique résiduelle est nulle ou au moins égale à 7. Cette classification est plus fine que la classification par le type à la Kodairaet Néron.


  • Résumé

    Suppose E is an elliptic curve over a complete discrete valuationfield K whose residue field k is algebraically closed. Then E has semi-stablereduction after a minimal field extension L/K, moreover L/K is Galois andlet G be the Galois group. Let O_{K} and O_{L} be the ring of integers of K andL respectively. Let X (resp. X ') be the minimal regular model of E over O_{K}(resp. O_{L} ). In the first part of thesis, we prove that for all natural integersn, the infinitesimal fiber X_{n} is determined by the G-action on O_{K}-schemeX'_{n+l} for some positive integer l (depending only on the discriminant of L/Kif the reduction type of E is not I*_{r} ). In the second part of thesis, we classifythe special fiber X_{0} up to isomorphisms as k-curves when Char(k) >= 7. This classification is finer than the classification by Kodaira and Néron.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.