Asymptotical results for models ARX in adaptive tracking

par Víctor Hugo Vázquez Guevara

Thèse de doctorat en Mathématiques appliquées et calcul scientifique

Sous la direction de Bernard Bercu et de Raúl Montes de Oca.

Soutenue le 10-06-2010

à Bordeaux 1 , dans le cadre de École doctorale de mathématiques et informatique (Talence, Gironde) , en partenariat avec Institut de mathématiques de Bordeaux (laboratoire) .

Le jury était composé de Rolando Cavazos Cadena, Jean-François Dupuy, Jean-Claude Fort, Fabrice Gamboa, Onésimo Hernandez-Lerma, Miguel Antonio Jimenes Pozos.

  • Titre traduit

    Résultats asymptotiques pour les modèles ARX en poursuite adaptative


  • Résumé

    Cette thèse est consacrée aux résultats asymptotiques pour les modèles ARX en poursuite adaptative. Elle est constituée de quatre parties. La première partie est une brève introduction sur les modèles ARMAX et un état de l’art des principaux résultats de la littérature en poursuite adaptative. La seconde partie porte sur l’introduction d’un nouveau concept de contrôlabilité forte pour les modèles ARX en poursuite adaptative. Il permet de généraliser les résultats antérieurs. On montre la convergence presque sûre des algorithmes des moindres carrés ordinaires et pondérés. On établit également le théorème de la limite centrale ainsi que la loi du logarithme itéré pour ces deux algorithmes. La troisième partie est dédiée aux modèles ARX qui ne sont pas fortement contrôlables. On montre que, via un contrôle de poursuite excité, il est possible de s’affranchir de l’hypothèse de forte contrôlabilité. La quatrième partie est consacrée au comportement asymptotique de la statistique de Durbin-Watson pour les modèles ARX en poursuite adaptative via des arguments martingales.


  • Résumé

    This thesis is devoted to asymptotical results for ARX models in adaptive tracking. It is divided into four parts. The first part is a short introduction on ARMAX models together with a state of the art on the main results in the literature on adaptive tracking. The second part deals with a new concept of strong controllability for ARX models in adaptive tracking. This new notion allows us to extend the previous convergence results. We prove the almost sure convergence for both least squares and weighted least squares algorithms. We also establish a central limit theorem and a law of iterated logarithm for these two algorithms. The third part is dedicated to ARX models that are not strongly controllable. Thanks to a persistently excited adaptive tracking control, we show that it is possible to get rid of the strong controllability assumption. The fourth part deals with the asymptotic behaviour of the Durbin-Watson statistic for ARX models in adaptive tracking via a martingale approach.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.