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Réduction de modèles pour la simulation, l’estimation et le côntrole
d’écoulements

L’objectif est de développer et de tester des instruments peu coûteux pour la sim-
ulation, l’estimation et le contrôle d’écoulements. La décomposition orthogonale aux
valeurs propres (POD) et une projection de Galerkin des équations sur les modes POD
sont utilisées pour construire des modèles d’ordre reduit des équations de Navier-Stokes
incompressibles. Dans ce travail, un écoulement autour d’un cylindre carré est con-
sidéré en configuration bidimensionnelle et tridimensionnelle. Des actionneurs de souf-
flage/aspiration sont placés sur la surface du cylindre. Quelques techniques de calibration
sont appliquées, fournissant des modèles précis, même pour les écoulements tridimension-
nels avec des structures tourbillonaires compliquées. Une méthode d’estimation d’état,
impliquant des mesures, est ensuite mise au point pour des écoulements instationnaires.
Une calibration multi-dynamique et des techniques d’échantillonnage efficaces sont ap-
pliquées, visant à construire des modèles robustes à des variations des paramètres de
contrôle. Nous amorçons une analyse de stabilité linéaire en utilisant des modèles d’ordre
réduit linéarisés autour d’un état d’équilibre contrôlé. Les techniques présentées sont ap-
pliquées à écoulement autour du cylindre carré à des nombres de Reynolds compriscentre
Re = 40 et Re = 300.

Mots clés: POD, modélisation d’ordre réduit, estimation, modèles robustes, contrôle

Low order modelling for flow simulation, estimation and control

The aim is to develop and to test tools having a low computational cost for flow
simulation, estimation and control applications. The proper orthogonal decomposition
(POD) and a Galerkin projection of the equations onto the POD modes are used to
build low order models of the incompressible Navier-Stokes equations. In this work a
flow past a square cylinder is considered in two-dimensional and three-dimensional con-
figurations. Two blowing/suction actuators are placed on the surface of the cylinder.
Calibration techniques are applied, providing stable and rather accurate models, even
for three-dimensional wake flows with complicated patterns. A state estimation method,
involving flow measurements, is then developed for unsteady flows. Multi-dynamic cal-
ibrations and efficient sampling techniques are applied to build models that are robust
to variations of the control parameters. A linear stability analysis by using linearized
low order models around a controlled steady state is briefly addressed. The presented
techniques are applied to the square cylinder configuration at Reynolds numbers that
range between Re = 40 and Re = 300.

Key words: POD, low-order modelling, estimation, robust models, control





Contents

Contents i

List of Figures iii

1 Introduction 1

2 Background on employed techniques 9

2.1 Low-order modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Proper orthogonal decomposition (POD) . . . . . . . . . . . . . . 9

2.1.2 Low order model of Navier-Stokes equations . . . . . . . . . . . . . 12

2.2 Linear and Quadratic stochastic estimation . . . . . . . . . . . . . . . . . 18

2.3 Spectral stochastic estimation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 General least-square technique . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Centroidal Voronoi Tessellation . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Flow setup and numerical simulation 25

4 A non-linear observer for an unsteady three-dimensional flow 31

4.1 Flow set up and low order model . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Non-linear observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Two-dimensional case: Re = 150 . . . . . . . . . . . . . . . . . . . 38

4.3.2 Three-dimensional case: Re = 300 . . . . . . . . . . . . . . . . . . 41

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Robust POD modeling of actuated vortex wake 55

5.1 Flow setup and low order model . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Robust low order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Divergence of a classical Reduced Order Model . . . . . . . . . . . 64

5.3.2 Testing model robustness: Re = 60 and Re = 150 . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

i



CONTENTS

6 A Residual based strategy to sample POD database 77
6.1 Reynolds dependent pressure extended reduced order model . . . . . . . 78

6.1.1 Reynolds adaptive pressure extended reduced order model . . . . 78
6.1.2 Calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Improvement of the model robustness . . . . . . . . . . . . . . . . . . . . 81
6.2.1 Effect of the Reynolds number variations onto the projection error 83
6.2.2 A residuals based error estimator . . . . . . . . . . . . . . . . . . . 83
6.2.3 A residual based sampling method . . . . . . . . . . . . . . . . . . 85

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Linearized low-order model of actuated transient flow 93
7.1 POD-based model of the linearized Navier-Stokes equations with feedback

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Linearized low-order feedback model . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Results Re = 85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Design of a control strategy based on the linear model . . . . . . . . . . . 100

7.3.1 Results Re = 85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3.2 Results Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Experimental signal analysis by POD 109
8.1 Application of POD for one-dimensional signals . . . . . . . . . . . . . . . 111
8.2 Application of POD for experimental fluid dynamics signals . . . . . . . . 121
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Conclusions 129

Conclusions 133

List of publications 137

Bibliography 139

ii



List of Figures

2.1 Projection vs. prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Voronoi tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Computational domain Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Instantaneous isocontours of vorticity of a snapshot at Re = 180. . . . . . 27

3.3 Streamwise and spanwise vorticity components in the wake at Re = 300.
Isosurfaces correspond to ωz = −0.4 (black) and ωz = 0.4 (gray) are
plotted. The streamwise tubes identify ωx = 0.4 and ωx = −0.4 respectively. 28

3.4 Time variation of lift coefficient Cl at Re = 300. . . . . . . . . . . . . . . 28

4.1 First component of the first (top) and the third (bottom) POD modes.
Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Three-dimensional flow: projection of the fully resolved Navier-Stokes
simulations over the POD modes (continuous line) vs. the integration
of the dynamical system inside the calibration interval, obtained retain-
ing the first 20 POD modes (circles). The first row is relative to state
calibration, the other to dynamics calibration. Only some representative
coefficients are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Three-dimensional flow: projection of the fully resolved Navier-Stokes
simulations over the POD modes (continuous line) vs. the integration
of the dynamical system inside the calibration interval, obtained retain-
ing the first 60 POD modes (circles). The first row is relative to state
calibration, the other to dynamics calibration. Only some representative
coefficients are shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Hypothetical placement of velocity and shear-stress sensors. . . . . . . . . 44

4.5 Relative percent error in the reconstruction of the fluctuating U compo-
nent, when varying CR: (a) KLSE, (b) KLSQ . . . . . . . . . . . . . . . . 45

4.6 Estimation of some representative modal coefficients in the three-dimensional
case, for sensor configuration (b) and far from the calibration interval, to-
gether with the reference values evaluated from the DNS simulation. Note
that the same graph is reported in the three columns but the axis scales
are different. Model by dynamics calibration with 20 modes. . . . . . . . . 46

iii



LIST OF FIGURES

4.7 Reconstruction of U ′ and V ′ components of the velocity at points (a) x/L
= 2.55, y/L = 2.51, z/L = 3.00 , (b) x/L = 5.45, y/L = 0.00, z/L = 3.00. 49

4.8 Isosurfaces of the velocity components u (left, grey = 0.5, dark grey =
1.0), v (center, grey = -0.25, dark grey = 0.25) and w (right, grey = -0.075,
dark grey = 0.075) of a snapshot outside the database: (a) actual snap-
shot, (b) snapshot projected on the retained POD modes,(c) reconstructed
snapshot using the K-LSE technique with the sensor configuration (b). . . 51

4.9 Reconstruction of Cl and Cd using KLSE results .vs. actual Cl and Cd
and their prjoections on the POD modes. . . . . . . . . . . . . . . . . . . 52

5.1 Sketch of the flow configuration with control actuation. . . . . . . . . . . 56

5.2 Projection of the DNS simulations onto POD modes vs. integration of
the dynamical system (5.10) with X = XG . . . . . . . . . . . . . . . . . 64

5.3 c1 (continuous line) versus cf, when the model is calibrated (left) and
when it is not (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 a3 DNS (continuous line) with K = 0.8 (top) and K = 1.3 (bottom) versus
a3 obtained when the model is calibrated with α = 1.6 ∗ 10−6 (left) and
when α = 10−3 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Control laws used to build the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 60 . . . . . . . . . . . . . 68

5.6 Control laws and time coefficients used for testing the 3-control model -
Re = 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Prediction errors obtained using 1-control, 2-control and 3-control models
at Re = 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 Model predicted vorticity field (top) and Navier-Stokes vorticity field at
t = T . Positive (continuous lines) and negative (dashed lines) vorticity
isolines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Control laws used to build the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 150 . . . . . . . . . . . . . 71

5.10 Control laws used to test the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 150 . . . . . . . . . . . . . 72

5.11 Prediction errors obtained using 1-control, 2-control and 3-control models
at Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.12 Model predicted vorticity field (top) and Navier-Stokes vorticity field at
t = T obtained with K = 0.1. Positive (continuous lines) and negative
(dashed lines) vorticity isolines - Re = 150 . . . . . . . . . . . . . . . . . . 73

5.13 Values of system coefficients Er and Fr for r = 1 · · · 10 - Re = 150 . . . . 74

6.1 Sketch of the three test cases for sampling. . . . . . . . . . . . . . . . . . 82

6.2 Evolution of the error 〈U ′〉2 versus the Reynolds number. . . . . . . . . . 84

6.3 Comparison between the mean projection error 〈U ′〉2 and the mean resid-
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Chapter 1

Introduction

In fluid dynamics one of the main topics is the study of the flow past bluff bodies. This
kind of flow is interesting for the engineering and scientific community. Many examples
of flows around bluff bodies can be found in engineering applications, for instance the
flow around a wing at high incidence in the aeronautical and automotive industry, or
the wind past a high rise building in civil engineering. When the Reynolds number over-
comes a critical value, these flows are characterized by a vortex shedding wake. This
phenomenon causes noise, structural vibrations and increase of drag and lift oscillation.
The control of the von Kármán wake can bring several benefits, as for instance in terms
of costs, noise and fuel consumption reduction.
The progress in computational fluid dynamics and the development of control theory over
the last fifteen years, together with the availability of increasing computing resources,
enable the consideration of the issue of the control of vortex shedding from a numerical
point of view.
We refer to the review by Choi et al. (2008) for an exhaustive description of the state
of the art. We distinguish passive and active control. Passive control, largely used for
reducing the drag of a bluff body, consists in the modification of geometrical or physical
features of the body, for instance by means of roughness and dimples, or splitter plates.
No sensors or actuators are involved in this kind of control.
The active control involves one or more actuations, like rotation or oscillation of the
bluff body, electromagnetic actions, blowing/suction or synthetic jets. Active control
can be divided into two categories: active open-loop and active closed-loop control. In
the case of open-loop control, the control law is pre-computed and applied without any
information on the present state of the flow. The control input can be for instance a
time-periodic or steady blowing and suction, or a periodic rotation applied to the body.
In the case of active closed-loop control, the input is modified according to the state
deduced from information on the the flow given by one or more sensors. Thus, the feed-
back control is adapted in real-time according to the evolution of the flow.
Hence, two main issues are involved in a closed-loop control: the accurate estimation of
the state and the determination of the optimal reaction to the control actuator.
In real applications only a limited number of noisy observations (velocity, pressure, shear
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1. INTRODUCTION

stress) is available to perform a state estimation of the actual flow field. Stochastic and
least squares based methods are widely used in order to approximate the entire flow
field starting from a small set of measurements. However, this kind of observer becomes
inaccurate when a very limited number of observations is available or when complex
flows are considered.
Furthermore, the control input has to be optimized in order to minimize a defined cost
function. In other words, given an objective function J (enstrophy, difference between
the flow field and a reference steady solution, drag coefficient...), find the set of control
parameters ci (time evolution of the intensity of blowing/suction, feedback parameters...)
that minimizes J such that certain constraints hold (Navier-Stokes equations...).
Such an optimal control problem (Gunzburger, 1997a) can be solved by a gradient de-
scent method, implying a wide number of computations both of the functional and of
its gradient to reach a minimum. In fluid mechanics, the discretization schemes of the
Navier-Stokes equations normally used in industrial applications lead to a system with
an extremely large number of degrees of freedom (107 − 108). The computational cost
required (Bewley et al., 2001; Min & Choi, 1999) makes use of such an optimal (or sub-
optimal) control for large-scale problems impractical for real-time aplications.
Thus, the idea is to find a small dimensional surrogate of the original dynamical system
(discretized Navier-Stokes equations) to be used in an iterative optimization procedure.
The starting point is a representation of the state variables in a reduced basis. A pro-
jection of the system equations onto the basis leads to a reduced order model for the
original problem. Many methods to obatin reduced order models exist and are used for
control purposes, as those founded on Lagrange/Hermite bases or Krylov spaces, bal-
anced truncation, Proper Orthogonal Decomposition (POD), balanced POD (Rowley,
2005), or vortex models (Protas, 2004). See Ito & Ravindran (1998) for a review.
In this research work we use the Proper Orthogonal Decomposition. In particular the
snapshots method to compute POD modes introduced by Sirovich (Sirovich, 1987) is
adopted. The Galerkin-projection of the Navier-Stokes equations onto the POD basis
leads to a reduced order model that can be employed in a flow estimation procedure and
in an optimal control strategy.
Starting from a set of flow solutions (database), the POD is the truncated series that
gives the best approximation of the flow fields from an energetic point of view. The main
drawback for flow control is that the POD basis is not optimal to represent a flow gen-
erated using different system parameters with respect to those used to build the basis.
In order to employ a low order model for flow control and estimation, its accuracy and
robustness have to be guaranteed. Indeed, a useful model has to reproduce precisely
the dynamics contained in the database and at the same time it has to be robust to
parameter variations or flow pattern evolutions.

The aim of this research work is to investigate and develop some tools, involving
POD low order models, that circumvent the drawbacks described above (mainly the
state estimation needed in a closed-loop control and the robustness required in a model)
and that can be used in control tools. Although the described techniques are applied to a
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particular configuration, they are derived under a completely general point of view, and
may be easily extended to other configurations. We considered a flow over a confined
square cylinder with a Reynolds number varying between Re = 40 and Re = 300. Both
two-dimensional and three-dimensional regimes are obtained depending on the Reynolds
number. The control actuation is given by two blowing/suction jets placed on the sur-
face of the cylinder.

The work, in addition to this introductive chapter, is organized as follows.
In the second chapter we describe the main techniques employed in this work. A brief
description of the Proper Orthogonal Decomposition is furnished as well as details about
calibration techniques used to adjust the low order model. Classical stochastic techniques
and domain tessellation used in the following are also summarized.
In Chapter 3 the flow configuration mentioned above is described. A short overview of
the Navier-Stokes code employed to obtain the flow simulations and references for details
on the numerical set-up are provided. In this chapter the behaviour of the flow when
the Reynolds number varies is also analyzed.
In the fourth chapter the problem of flow state estimation in an active closed-loop con-
trol is addressed. To this aim an accurate non-linear flow state observer based on POD
reduced order modeling is developed. A method for estimating the dynamics is described
and the obtained results are compared with those given by other existing techniques.
Flow configurations with different complex patterns as well as several sensor placements
are considered. In this application no control device is included, but the method can
easily be extended for actuated flows.
In Chapter 5 models that depend explicitly on the control are examined. A methodology
to derive robust low order models is provided. By robustness we mean the validity of the
model when the control parameters are varied. The basic idea is to perform a calibration
on multiple controlled dynamics in order to span a larger space of input parameters.
The resulting models are tested in an open-loop context as well as in a feedback control
configuration. Such a robust model is useful within a control optimization procedure
performed in the reduced space.
Chapter 6 is dedicated to the study of an optimal sampling method, i.e. given the di-
mension of the database used to compute the POD basis, find an efficient way to sample
the solution space in order to build the most robust basis and low order model possible.
The aim of this procedure (coupled with the technique developed in chapter 5 ) is to
provide a robust and cheap model that has to be updated as less as possible during an
optimization procedure.
In Chapter 7 we analyze a linearized low order model for a feedback actuated flow,
obtained from a set of solutions given by a non-linear Navier-Stokes code. The model
is obtained starting from one or more transient dynamics of controlled flows and then
linearized around a steady solution. The aim is to test the accuracy of such a low order
model in estimating the global instability of the actual flow when feedback control is
active. Moreover, a linear stability analysis is not always possible when working with
complex tools like those typically used in engineering applications. Thus, the linearized
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1. INTRODUCTION

model, built starting from a non-linear code, can be used to perform a linear stability
analysis of the reproduced flow.

Finally, in Chapter 8 Proper Orthogonal Decomposition is applied to the analysis of
one dimensional fluid dynamics signals. No dynamical model is involved in this chapter.
In order to detect the principal components of experimental signals, the POD modes
are used to extract their main components from the original signals. The decomposition
procedure was carried out in collaboration with Valerio Iungo (DIA, Università di Pisa),
which provided the hot-wire experimental results. It is shown that POD analysis gives
interesting results in terms of automatic detection of the main features of the flow.
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Introduction

En méchanique des fluides un des thèmes principaux est l’étude des écoulements autour
de corps épais. Ce type d’écoulement est intéressant pour la communauté d’ingénierie
et scientifique. De nombreux exemples d’écoulements autour de corps épais peuvent
être trouvés dans des applications industrielles, par exemple l’écoulement autour d’une
aile à incidence élevée dans l’industrie aéronautique et autour d’un corps d’Ahmed dans
l’industrie l’automobile, ou le vent autour un bâtiment de grande hauteur en génie civil.
Lorsque le nombre de Reynolds est plus grand qu’une valeur critique, ces écoulements
sont décollés et caractérisés par un sillage qui présente une allées tourbillonaire, ( vortex
shedding). Ce phénomène est reponsable de perturbations acoustiques, de vibrations
structurelles, et de l’augmentation de trâınée et oscillations de portance dans les appli-
cations aéronautiques. Le côntrole du sillage de von Kármán peut permettre de réduire
le bruit acoustique et également de réduire la consommation carburant.
Au cours des quinze dernières années les progrés réalisés en calcul numérique pour la
mécanique des fluides et le développement de la théorie du contrôle, ainsi que la disponi-
bilité des ressources informatiques, ont permis de s’intéresser à la question du contrôle
du détachement tourbillonnaire d’un point de vue numérique. Un état de l’art exhaustif
peut être trouvé dans Choi et al. (2008). On distingue contrôle passif et contrôle actif.
Le contrôle passif consiste généralement à modifier la géométrie ou les caractéristiques
physiques du corps, par exemple la modification de la rugosité. Avec ce type de contrôle
aucun capteur ou actionneur n’est impliqué.
Le contrôle actif implique une ou plusieurs actions temporelles, comme la rotation ou
l’oscillation du corps, actions électromagnétiques, soufflage/aspiration ou jets synthétiques.
Le côntrole actif peut être divisé en deux catégories : en boucle ouverte et en boucle
fermée. Dans le cas du contrôle en boucle ouverte, la loi de côntrole est pré-calculée
et appliquée sans aucune information sur l’état réel de l’écoulement. Le cóntrole peut
être par exemple une action de soufflage et aspiration périodique ou continue, ou une
rotation périodique appliqué au corps.
Dans le cas d’un contrôle actif en boucle fermée, le contrôle est modifié en fonction de
l’état déduit par des informations sur l’écoulement données par un ou plusieurs cap-
teurs. Ainsi, l’action de contrôle est adapté en temps réel en fonction de l’évolution
de l’écoulement. Donc, deux questions principales sont impliquées dans un contrôle en
boucle fermée : l’estimation précise de l’état et la détermination de l’action optimale du
contrôle.
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1. INTRODUCTION

En effet, dans des applications réelles, seulement un nombre limité d’observations bruyantes
(vitesse, pression, contraintes, ...) est disponible pour effectuer une estimation de l’état
du champ d’écoulement réel. Les méthodes stochastiques et les méthodes des moindres
carrés sont largement utilisées afin de reconstruire le champ d’écoulement entier à par-
tir d’un petit ensemble de mesures. Toutefois, ce type d’observateurs devient inexacte
losqu’un nombre très limité d’observations est disponible, ou lorsque des écoulements
complexes sont pris en compte.
En outre, le contrôle doit être optimisé afin de minimiser une fonction coût définie.
En d’autres termes, étant donnée une fonction objectif J (enstrophie, différence en-
tre le champ d’écoulement et une solution de référence stable, coefficient de trâınée...),
trouver l’ensemble des paramètres de contrôle ci (évolution en temps de l’intensité du
soufflage/aspiration, paramètres de feedback...) qui minimise J telle que certaines con-
traintes sont satisfaites (équations de Navier-Stokes...).
Un tel problème de contrôle optimal (Gunzburger, 1997a) peut étre résolu par une
méthode basée sur le gradient de la fonction objectif, qui implique un grand nombre
de calculs de la solution des équations d’état (ici, les équations de Navier-Stokes). En
méchanique des fluides, les schemas de discrétisation des équations de Navier-Stokes
normalement utilisés en applications industrielles conduisent à des systèmes avec un très
grand nombre de degrés de liberté (107−108). Le coût de calcul nécessaire (Bewley et al.,
2001; Min & Choi, 1999) rend impraticable le contrôle optimale (ou sous-optimale) pour
problèmes a grand échelle.
Ainsi, l’idée est de trouver un substitut de dimension réduite du système dynamique origi-
nal (équations de Navier-Stokes discrétisées) à utiliser dans une procédure d’optimisation
itérative. Le point de départ est une représentation des variables d’état sur une base
réduite. Une projection des équations du système détaillé sur la base conduit á un modèle
d’ordre réduit pour le problème original. De nombreuses méthodes de modélisation
réduit existent et sont utilisés pour le contrôle, comme les méthodes fondées sur les bases
de Lagrange/Hermite ou les espaces de Krylov, la balanced truncation, la Décomposition
aux valeurs propres (POD), balanced POD (Rowley, 2005), les méthodes particulaires
(vortex) (Protas, 2004). Une revue de ces méthodes peut être trouvée dans Ito & Ravin-
dran (1998).
Dans ce travail de recherche nous utilisons la POD. En particulier, la méthode de snap-
shot, introduite par Sirovich (Sirovich, 1987) est adoptée pour calculer les modes POD.
La projection de Galerkin des équations de Navier-Stokes sur la base POD conduit á un
modèle d’ordre réduit qui peut être aussi bien employé dans une procédure d’estimation
d’écoulement que dans une stratégie de contrôle optimal.
A partir d’un ensemble de solutions d’un écoulement (base de données), la POD est la
série tronquée qui donne la meilleure approximation de la base de données des champs
de l’écoulement d’un point de vue énergétique. L’inconvénient principal est que la base
POD n’est pas optimale pour représenter un écoulement généré en utilisant différents
paramètres d’entrée que ceux qui sont utilisés pour construire la base.
Afin d’utiliser un modèle d’ordre réduit pour le contrôle et l’estimation d’écoulement,
sa précision et robustesse doivent être garantis. En effet, un modèle qui peut être
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utilisé dans une procedure de contrôle doit reproduire avec précision la dynamique con-
tenue dans la base de données et en même temps il doit être robuste aux variations des
paramètres d’entrée ou á évolutions de la configuration de l’écoulement.

L’objectif de ce travail de recherche est d’étudier et développer certains outils, impli-
quant des modèles d’ordre réduit basés sur la POD, qui éludent les inconvénients décrits
ci-dessus (essentiellement l’estimation d’état nécessaire pour une application de contrôle
en boucle fermée et la robustesse exigée pour un modèle) et qui peuvent être utilisés dans
des procédures de contrôle. Bien que les techniques décrites sont appliquées à une con-
figuration particulière, ils sont dérivés d’un point de vue tout à fait général, et peuvent
être facilement étendues à d’autres configurations plus complexes. Nous avons considéré
un écoulement sur un cylindre carré confiné avec un nombre de Reynolds variant entre
Re = 40 et Re = 300. En fonction du nombre de Reynolds les écoulements sont calculés
en deux ou trois dimensions. L’actionnement du contrôle est donné par deux jets de
soufflage/aspiration placée sur la surface du cylindre.

La mémoire, en plus de ce chapitre introductif, est organisée comme suit.
Dans le deuxième chapitre, nous décrivons les principales techniques employées dans ce
travail. Une brève description de la Décomposition aux valeurs propres (Proper Orthog-
onal Decomposition) est fournie ainsi que des détails sur des techniques de calibration
utilisées pour ajuster le modèle d’ordre réduit. Les techniques stochastiques classiques
et de decomposition de domaine utilisées dans les chapitres suivants sont également
résumées.
Dans le chapitre 3, la configuration d’écoulement mentionnée ci-dessus est décrite. Un
bref aperçu du code de resolution des équations de Navier-Stokes employé pour obtenir
les simulations d’écoulement est fourni. Dans ce chapitre, le comportement de l’écoulement
quand le nombre de Reynolds varie est également analysé.
Dans le quatrième chapitre, il est adressé le problème de l’estimation d’état de l’écoulement
dans une procedure de contrôle actif en boucle fermée. Dans cet optique, nous avons
développé un observateur d’état d’écoulement non linéaire basé sur la modélisation
réduite POD. Une méthode d’estimation de la dynamique est décrite et les résultats
obtenus sont comparés à ceux donnés par d’autres techniques existantes. Différentes
configurations d’écoulement sont prises en compte avec diverses distributions de place-
ment des senseurs. Dans cette application, aucun dispositif de contrôle n’est inclus, mais
la méthode peut être facilement étendu pour les écoulements actionnés.
Dans le chapitre 5, nous étudions des modèles qui dépendent explicitement du contrôle.
Une méthodologie pour calculer des modèles d’ordre réduit robustes est fournie. Par ro-
bustesse, nous entendons la precision du modèle à la prediction de la dynamique lorsque
les paramètres de contrôle varient. L’idée de base est d’effectuer une calibration sur
plusieurs dynamiques contrôlées afin de couvrir un plus grand espace des paramètres
d’entrée. Les modèles résultants sont testés dans un contexte en boucle ouverte aussi
bien que dans une configuration de contrôle en rétroaction. Un tel modèle robuste est
utile dans une procédure d’optimisation de contrôle effectuée dans l’espace réduit.
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La chapitre 6 est dédié à l’étude d’une méthode d’échantillonnage optimale, ie trouver
un moyen efficace pour échantillonner le sous-espace des paramétres d’entrée du systéme
afin de construire la base POD et le modèle réduit les plus robustes possible. Le but de
cette procédure (couplée avec la technique développée dans le chapitre 5) est de fournir
un modèle robuste, et peu cher d’un point de vue numérique, qui doit être mis à jour le
moins possible au cours d’une procédure d’optimisation.
Dans le chapitre 7, nous analysons un modèle réduit linéarisé pour un écoulement ac-
tionné en feedback, obtenu en utilisant comme base de données un ensemble de solutions
produites par un code de Navier-Stokes non-linéaire. Le modèle est obtenu à partir d’une
ou plusieurs dynamiques de transitoires d’écoulements contrôlés, puis linéarisé autour
d’une solution d’équilibre. L’objectif est de tester la précision d’un tel modèle d’ordre
réduit à l’estimation de l’instabilité globale de l’écoulement réel lorsque le contrôle en
rétroaction est actif. En outre, une analyse de stabilité linéaire n’est pas toujours possi-
ble lorsque l’on travaille avec des outils complexes, comme ceux qui sont habituellement
utilisés dans des applications d’ingénierie. Donc, le modèle linéarisé, construit avec un
code non linéaire, peut être utilisé pour effectuer une analyse linéaire de stabilité de
l’écoulement reproduit.

Enfin, dans la chapitre 8, la POD est appliqué à l’analyse d’un signal d’écoulement
expérimental. Aucun modèle dynamique est engagé dans ce chapitre. Afin de détecter
les composantes principales des signaux expérimentaux, les modes POD sont utilisées
pour extraire les modes propres des signaux originaux. La procédure de décomposition
a été developpée en collaboration avec Valerio Iungo (DIA, Università di Pisa), qui a
fourni les résultats expérimentaux obtenus par fil chaud. Il est montré que l’analyse POD
donne des résultats intéressants en terme de détection automatique des caractéristiques
principales de l’écoulement.
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Chapter 2

Background on employed
techniques

In this chapter we describe the main techniques employed in this work. A brief de-
scription of the Proper Orthogonal Decomposition is furnished as well as details about
calibration techniques used to adjust the low order model. Classical stochastic techniques
and domain tessellation used in the following are also summarized.

2.1 Low-order modeling

Due to the complexity of the non-linear equations of the system, that involve a huge
number of degrees of freedom, many tools of control theory are impracticable for fluids
for real-time applications. To avoid the large computational costs, model reduction
is nedeed, i.e. a low-dimensional model which approximates the full high-dimensional
dynamics must be obtained.

The model reduction technique discussed here is a projection method, i.e. it involves
the projection of the equations of motion onto a subspace of the original space. There
are many methods available for reducing both linear and non-linear systems (see Ito
& Ravindran (1998); Antoulas et al. (2001); Weller (2009) for reviews), as for instance
methods based on Lagrange/Hermite bases (Ito & Ravindran, 1998; Grepl et al., 2005),
on Krylov spaces (Willcox, 2000), balanced truncation (Moore, 1981), Proper Orthogonal
Decomposition (POD), balanced POD (Rowley, 2005), vortex models (Protas, 2004). We
concentrate our work on the POD-Galerkin method.

2.1.1 Proper orthogonal decomposition (POD)

The proper orthogonal decomposition (POD) provides a basis for a modal decomposition
of an ensemble of functions. Its properties suggest that it is one of the best suited bases
for various applications. The most important property is its optimality : it provides
the most efficient way of capturing the dominant components of an infinite-dimensional
process with only a limited number “modes”.
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2. BACKGROUND ON EMPLOYED TECHNIQUES

POD was introduced in the context of fluid mechanics by Lumley (see Lumley
(1967)), in order to identify and extract dominant features and trends of a turbulent flow:
the coherent structures. In other disciplines the same procedure is named: Karhunen-
Loève (K-L) decomposition (Karhunen, 1946; Loève, 1955), principal components anal-
ysis (Joliffe, 1986), Singular Value Decomposition (Golub & Van Loan, 1990) and EOFs.
The functions obatined through this technique are variously called: empirical eigenfunc-
tions, empirical basis functions, and proper orthogonal modes.

Further, the POD provides an optimal basis that can be used to project the equations
of the dynamical system and then construct a reduced model. Finally, being the POD
basis optimal in terms of energy, only a limited number of POD modes are needed to
capture almost entirely the flow energy.

A comprehensive review of POD can be found in (Aubry et al. (1988); Sirovich
(1987); Cordier & Bergmann (2002); Bergmann (2004)).

The fundamental idea behind the POD is straightforward. Let us assume to have a
data set obtained through a numerical simulation over the time interval [0, T ] and ar-
ranged in N tensors {U (1),U (2), . . . ,U (N)}, where each tensor can represent for instance
a snapshot of the velocity field at a given time

U (k) =




(u(x1, tk) v(x1, tk) w(x1, tk))
(u(x2, tk) v(x2, tk) w(x2, tk))

...
(u(xM , tk) v(xM , tk) w(xM , tk))


 , t1 = 0 and tN = T

The aim is to find a low-dimensional subspace of L = span{U (1),U (2), . . . ,U (N)}
that gives the best approximation of L. To this end we define a unit norm vector φ that
has the same structure of the snapshots, i.e.

φ =




(φ1(x1) φ2(x1) φ3(x1))
(φ1(x2) φ2(x2) φ3(x2))

...
(φ1(xM ) φ2(xM ) φ3(xM ))


 with ‖φ‖2 = (φ , φ) = 1

and whose mean square projection on the elements of L is the largest. Thus we determine
such a function φ by maximizing the functional

J1 =
N∑

k=1

(
U (k),φ

)2

Let us set u(xj , tk) = u1
jk, v(xj , tk) = u2

jk, w(xj , tk) = u3
jk and φh(xj) = φh

j with
j = 1, . . . ,M, k = 1, . . . , N and h = 1, 2, 3. In view of these assumptions and the
Einstein notation for summations, the problem can be formulated as follows:
“find those φ, which maximize the functional

J1 = φh
j u

h
jku

l
ikφ

l
i
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under the constraint φh
jφ

h
j = 1.”

This is equivalent to finding the extrema of the unconstrained functional

J2 = φh
j u

h
jku

l
ikφ

l
i − λj

(
φh

j φ
h
j − 1

)
(2.1)

The vectors φ that maximize J2 are given by the eigenvectors of a spatial correlation
matrix which is M×M, thus solving the eigenproblem requires a very large number of
calculations. Sirovich suggested a clever way to get around this difficulty, which consists
of expressing φ as a linear combination of the snapshots (“snapshot method”, see Sirovich
(1987) and Cordier & Bergmann (2002) for justification)

φ =
N∑

n=1

bnU
(n) (2.2)

Hence by substituting φh
j = uh

jkbk in (2.1) one obtains

J2(λ1, . . . , λN , b1, . . . , bN ) = bk

(
uh

jku
h
jr

)(
ul

iru
l
is

)
bs − λj

(
bku

h
jku

h
jrbr − 1

)

The vanishing of the first derivatives of J2 with respect to the unknown b1, . . . , bN leads
to the eigenproblem

Rb = λ b

where Rks = uh
jku

h
js and b = [b1, b2, ..., bN ]T . At this point, the time correlation matrix

R is N×N and can be easily dealt with, as N ≪M . Since R is symmetric and positive
definite, it has a complete set of orthonormal eigenvectors f1, . . . ,fN and a set of real
and positive eigenvalues λ1, . . . , λN . The eigenvalues form a decreasing and convergent
series. Each eigenvalue represents the contribution of the corresponding mode bn to
the information content of the original data. Note that if U (n) are, as here, the velocity
fields, the information content reduces to the kinetic energy. By letting bs = fs/

√
λs with

s = 1, . . . , N we find a set b1, . . . , bN of orthogonal (non orthonormal) eigenvectors of R
which satisfy the constraint bksu

h
jku

h
jrbrs = 1. Once we have calculated the set b1, . . . , bN

that maximizes J2, we can finally retrieve the set of eigenfunctions φ1, . . . ,φN by means
of the expansion (2.2), that is in terms of components

φh
jk = uh

jnbnk

with j = 1, . . . ,M, k = 1, . . . , N, n = 1, . . . , N and h = 1, 2, 3. These eigenfunctions are
referred to as POD modes. Since the POD eigenfunctions can be represented as linear
combinations of the realizations, they inherit all the linear properties of the original data.
For instance, the eigenfunctions are divergence free for incompressible flows. Moreover,
the eigenfunctions verify the boundary conditions of the numerical simulation used to
determine the flow realizations. Let us write the inner product between two generic
POD modes:

(φk ,φs) = φh
jkφ

h
js = brku

h
jru

h
jqbqs = brkλsbrs = λs

frk√
λk

frs√
λs

= δks

√
λs

λk

= δks

11



2. BACKGROUND ON EMPLOYED TECHNIQUES

where δ is the Kronecker delta tensor. The above relationship proves that the POD
modes form a complete orthonormal set.

The snapshots (instantaneous velocity fields) can be expanded with arbitrary accu-
racy in terms of a limited number Nr ≥ 1 of POD eigenfunctions:

U(x, t) =

Nr∑

n=1

an(t)φn(x) (2.3)

The original goal of obtaining a low-dimensional subspace which approximates the set L
can be achieved by neglecting the less energetic modes in that expansion, i.e., the modes
that correspond to the smallest eigenvalues. In practice, since

∑Nr

i=1 λi represents the
energy amount contained in the first Nr modes, we could choose Nr so that the ratio∑Nr

i=1 λi

/∑N
i=1 λi is larger than a given threshold, for instance 99%.

2.1.2 Low order model of Navier-Stokes equations

We now describe the reduction of the Navier-Stokes equations to a low-dimensional set
of ordinary differential equations (ODEs). This reduction in fluid mechanics, means
passing from about 107 − 108 degrees of freedom given by a discretization of the Navier-
Stokes equations via numerical schemes, to a dynamical system of 10 − 100 ODEs. To
this end, we apply the concepts introduced above through the POD description.

POD-Galerkin model

Let us refer to the case where the considered snapshots are only velocity fields (an
exemple with snapshots formed by velocity and pressure fields is treated in (chapter
5). The starting point is a representation of the velocity field u(x, t) in terms of Nr

empirical eigenfunctions, φi(x), obtained by Proper Orthogonal Decomposition (see
Lumley (1967) and section §2.1.1)

ũ(x, t) = u(x) +

Nr∑

i=1

ai(t)φ
i(x) (2.4)

where u(x, t) : R
n × [0, T ] → R

n, Φi(x) : R
n → R

n, n ∈ {2, 3} according to the physical
space dimension, u(x) is some reference velocity field that satisfies the same boundary
conditions as the snapshots and ai(t) : I = [0, T ] ⊂ R → R. u(x) is subtracted from the
snapshots to ensure that the new snapshots are equal to zero on the boundaries. In the
following if not indicated, the reference field is assumed be the average of the original
snapshots.

Let us consider the non-dimensional incompressible Navier-Stokes equations:

∂u
∂t

+ (u · ∇)u = −∇p+
1
Re

∆u

∇ · u = 0
in Ω × (0, T ) (2.5)

12



2.1. LOW-ORDER MODELING

Since the POD modes are divergence-free by construction, if we substitute expansion
(2.4) in (2.5) and perform a Galerkin projection onto the POD modes, we obtain the
following nonlinear ordinary differential system:





ȧr(t) = Ar + Ckrak(t) −Bksrak(t)as(t) − Pr

ar(0) = (u(x, 0),φr)

1 ≤ r ≤ Nr

(2.6)

where:

Ar = −((u · ∇)u,φr) +
1

Re
(∆u,φr)

Bksr = ((φk · ∇)φs,φr)

Ckr = −((u · ∇)φk,φr) − ((φk · ∇)u,φr) +
1

Re
(∆φk,φr)

Pr = (∇p,φr)

We note that since the snapshots satisfy the continuity equation, the modes do also. This
implies that the pressure term Pr, by integration by parts, is equal to

∫
∂Ω pφ

r · n̄ ds. If
velocity field is (almost) constant at the boundaries, the POD modes are (almost) zero
there. The pressure term therefore disappears (can be neglected).

The initial value problem (2.6) is a reduced order model of the Navier-Stokes equa-
tions called POD-Galerkin model.

Calibration procedure

A vast literature concerning the POD-Galerkin modeling for fluid flows exists (Galletti
et al., 2006; Buffoni et al., 2006; Galletti et al., 2004; Ma & Karniadakis, 2002), and
some results show the possible interest of using POD in applications such as flow control
(Bergmann et al., 2005; Gillies, 1998; Graham et al., 1998; Ravindran, 2006; Afanasiev
& Hinze, 2001).
However, several problems related to the idea of modeling a flow by a small number of
variables are open. One of the issues is the asymptotic stability of the models obtained.
Often such models are capable of correctly reproducing the dynamics over small time
intervals, whereas the asymptotic behavior converges to incorrect limit cycles (Ma &
Karniadakis, 2002). This issue is related to both numerical artifacts and to an improper
representation of the solution (Iollo et al., 2000; Rempfer, 2000; Noack et al., 2003).
Moreover, by neglecting the less energetic modes, also their interaction with the more
energetic modes is neglected and this leads to a lack of dissipation in the reduced order
model. To avoid this loss in dissipation, in (Bergmann et al., 2005) and (Rempfer &
Fasel, 1994) numerical viscosity is added aimed to stabilize the model.

13



2. BACKGROUND ON EMPLOYED TECHNIQUES

On the other hand, in order to model the interaction between the unresolved modes
with the resolved ones, the terms of the low-order model can be “calibrated”, fitting
the prediction of the dynamical reduced model on the actual Navier-Stokes solution.
Only the terms Ar and Ckr are modified. Indeed, as shown in (Galletti et al., 2006),
we could in principle write the solution of the equation for the unresolved modes as
a function of the resolved ones and then inject this solution into the equation for the
resolved modes. Thus, performing calibration over Ar and Ckr, can be interpreted as
finding the MacLaurin expansion of this function up to the linear term. Note that when
the pressure term Pr is not identically equal to zero, its effect is also considered in the
terms Ar and Ckr.

This approach (Galletti et al., 2006) was used with good results in (Buffoni et al.,
2006) and in (Couplet et al., 2005) for complicated three-dimensional and turbulent flows
respctively.

In view of the orthogonality of the POD modes, the inner product of the i-th snapshot
and the r-th mode represent the reference value of coefficient ar(t) computed at the time
ti, that is aex

r (ti) = (u(x, ti),φ
r). Since the snapshots of the flow are N , there will be a

discrete set of N reference values for each amplitude ar(t). We can pass from the discrete
to the continuous in the time variable by defining âr(t) as the spline that interpolates
the set of points {(t1, aex

r (t1)) , . . . , (tN , a
ex
r (tN ))}.

t1 tN=Tt2

a (t)r

âr(t)

t

a ( )r 0

Figure 2.1: Projection vs. prediction.

Now, the coefficients Ar and Ckr can be found so that the amplitudes ar(t) computed
by solving (2.6) (dashed line in the sketch of figure 2.1), are as close as possible to the
corresponding reference amplitudes âr(t) (solid line in the sketch of figure 2.1. Recalling

14



2.1. LOW-ORDER MODELING

that T = tN , this objective is reached by minimizing the functional

J3 =

∫ T

0

Nr∑

r=1

(ar(t) − âr(t))
2 dt

under the constraints (2.6). By applying the technique of the Lagrange multipliers the
previous problem is equivalent to finding the extremum of the free functional

J4 =

∫ T

0

Nr∑

r=1

(ar(t) − âr(t))
2 dt+

∫ T

0
bk [ȧk(t) −Ak − Clkal(t) +Blskal(t)as(t)] dt

To this end, the vanishing of the Fréchet derivatives of J4(ar(t), br(t), Ar, Ckr) with
respect to all its arguments is to be imposed. This leads to the following direct-adjoint
problem
{
ȧr(t) = Ar + Ckrak(t) −Bksrak(t)as(t)

ar(0) = = (u(x, 0),φr)
direct problem (2.7)

{
−ḃr(t) = [Crk − (Blrk +Brlk)al(t)] bk(t) − 2 [ar(t) − âr(t)]

br(T ) = 0
adjoint problem (2.8)

{∫ T

0 br(t)dt = 0
∫ T

0 ak(t)br(t)dt = 0
optimality conditions

(2.9)
where all the subscripts go from 1 to Nr. Those equations are discretized with a pseudo–
spectral collocation method along the t axis. The functions ar(t), br(t) and âr(t) are
sampled at the Nt Gauss-Lobatto points ti = T/2 (1− ξi) with ξi = cosπ(i−1)/(Nt −1)
and i = 1, . . . , Nt, that is air = ar(ti), bir = br(ti) and âir = âr(ti). An interpolation is
performed to retrieve the values of these functions out of the nodes ti, more precisely

ar(t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
ajr

br(t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
bjr

âr(t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
âjr

where ξ = 1 − 2 t/T and ψj(ξ) are the Lagrangian interpolating polynomials based on
the nodes ξi. The time derivatives of the first two interpolated functions at the nodal
values are then

ȧr(ti) ≈ − 2

T

Nt∑

j=1

dψj

dξ

∣∣∣∣
ξi

ajr =

Nt∑

j=1

Dij ajr

ḃr(ti) ≈ − 2

T

Nt∑

j=1

dψj

dξ

∣∣∣∣
ξi

bjr =

Nt∑

j=1

Dij bjr

(2.10)
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2. BACKGROUND ON EMPLOYED TECHNIQUES

The differentiation matrix can be found in (Canuto et al., 1988) and is equal to

Dij = − 2

T

dψj

dξ

∣∣∣∣
ξi

= − 2

T





ci
cj

(−1)j+i

ξi − ξj
j 6= i

−1

2

ξi
1 − ξ2i

j = i 6= 1, Nt

2(Nt − 1)2 + 1

6
j = i = 1

−2(Nt − 1)2 + 1

6
j = i = Nt

with c1 = cNt = 2 and c2 = · · · = cNt−1 = 1 .
The optimality condition can be rewritten in terms of the interpolated functions in

the follow way
∫ T

0
ak(t)br(t) dt ≈

Nt∑

i=1

Nt∑

j=1

aik Iij bjr (2.11)

where the integrals

Iij =

∫ T

0
ψi(ξ)ψj(ξ) dξ with i, j = 1, . . . , Nt

are calculated by means of the Legendre quadratures. Finally by virtue of (2.10) and
(2.11) the equations (2.7),(2.8) and (2.9) are discretized as follows

a1r = ar(0) r = 1, . . . , Nr

Dijajr −Ar − Clrail +Blsrailais = 0 i = 2, . . . , Nt, r = 1, . . . , Nr

Dijbjr + Crsbis − (Blrs +Brls)ailbis − 2 [air − âir] = 0 i = 1, . . . , Nt−1, r = 1, . . . , Nr

bNtr = 0 r = 1, . . . , Nr

1i Iij bjr = 0 r = 1, . . . , Nr

aik Iij bjr = 0 k = 1, . . . , Nr r = 1, . . . , Nr

where 1 is a Nt-dimensional array of ones. These are 2NtNr + N2
r algebraic equations

in the 2NtNr + N2
r unknowns which are solved with a Newton method that converges

quickly. The former procedures can be viewed as a sort of “calibration” of the model
on the given database. We denote this procedure by state calibration method.

The number Nt must be large enough in order to give a good description of the high
frequency amplitudes, consequently it is to be increased as Nr goes up.

Although very accurate, the computational cost of this calibration procedure is not
negligible when the number of modes is large or when the flow shows a large span of
time frequencies.

For this reason, we used an alternative method, as already suggested in (Galletti
et al., 2004), that delivers a reasonable model at the cost of a matrix inversion.
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2.1. LOW-ORDER MODELING

The idea is simple. We ask that the terms Ar and Ckr in (2.6) are such that the
error on the time derivative

J5 =

∫ T

0

Nr∑

r=1

(
ȧr(t, â) − ˙̂ar(t)

)2
dt

is minimised. Where ȧr(t, â) are the time-derivative of the amplitudes given by model
when the reference amplitudes are used

ȧr(t, â) = Ar + Ckrâk(t) −Bksrâk(t)âs(t)

Thus, while the state calibration method is a calibration on the state of the system, this
technique, denoted by dynamics calibration method, is a calibration on the dynamics. It
can be seen that this technique amounts to a minimization of the model residual when
the reference coefficients are used. Moreover, this method is equivalent to the intrinsic
stabilization scheme developed in (Kalb & Deane, 2007).

The vanishing of the derivatives of J5(Ar, Ckr) with respect to Ar, Ckr leads to the
linear system

{
Ckr

∫ T

0 âk(t) dt+ArT =
∫ T

0
˙̂ar(t) dt+Bksr

∫ T

0 âk(t)âs(t) dt

Ckr

∫ T

0 âk(t)âm(t) dt+Ar

∫ T

0 âm(t) dt =
∫ T

0
˙̂ar(t) âm(t) dt+Bksr

∫ T

0 âk(t)âs(t)âm(t) dt
(2.12)

∀r,m ∈ {1, . . . , Nr}. All the integrals in the above equations are known and, for each r,
a set of Nr + 1 linear equations is obtained for the coefficients Ar and Ckr. Note that in
the Nr systems to be solved only the right-hand side changes.

Poisson pressure model

If the original snapshots are only the velocity fields, as in the procedure described in the
previous sections, the low order model is a simple velocity model. It is however useful to
have an approximation of the pressure field, for instance to estimate the aerodynamics
forces around bodies or to compute the residual of the Navier-Stokes equations. Thus,
when the dynamical model is derived only for the velocity, we have to provide an estima-
tion of the pressure. An independent POD procedure is performed also for the pressure
fields. This leads to a set of POD pressure modes ψn. The pressure at each time instant
can be developed in terms of the first Np

r modes :

p(x, t) = p̄(x) +

N
p
r∑

i=1

bi(t)ψ
i(x) (2.13)

where p̄(x) is the pressure field of the same reference solutions used for the velocity.
We recall the Poisson equation for incompressible flows:

∆p(x, t) = −∇ · (u(x, t) · ∇u(x, t)) (2.14)
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2. BACKGROUND ON EMPLOYED TECHNIQUES

Using the expansion for p(x, t) and u(x, t) in terms of the first Np
r and Nr modes

respectively, the projection of the Poisson equation onto the retained pressure modes
leads to the following system:





Lp
ilbl(t) = Ap

i + Cp
ijaj(t) +Bp

ijkaj(t)ak(t)

aj(t)c(t)

1 ≤ i, l ≤ Np
r

1 ≤ j, k ≤ Nr

(2.15)

where:

Lp
ij = (∆ψk, ψr)

Ap
i = −(∆p̄, ψr) − (∇ · (ū · ∇ū, ψr))

Cp
ij = −((∇ · (ū · ∇φk), ψr) − (∇ · (φk · ∇ū), ψr))

Bp
ijk = −(∇ · (φk · ∇φs), ψr)

This Poisson model enables computation of the pressure coefficients bi(t) at each
time instant at which the velocity coefficients ai(t) are known.
In order to fit the pressure model to the database solutions, we can perform a calibration
procedure as described above also for the Poisson model. We let b̂i(t) be the temporal
coefficients obtained by projecting the pressure fields onto the POD subspace. The
coefficents Lp

ij , A
p
i and Cp

ijk are chosen by minimizing the norm of the residual obtained
by substituting âr(t) into (2.15)

J6 =

∫ T

0

Nr∑

r=1

(
Lp

rlbl(t)(t, â) − Lp
rlb̂l(t)

)2
dt

The vanishing of the derivatives of J6(L
p
ij , A

p
i , C

p
ij) with respect to Lp

ij ,A
p
i and Cp

ij leads
to a simple linear system for Lp

rl,A
p
i and Cp

ij analogous to (2.12). As previously the non
linear term Bp

ijk results from the Galerkin projection and is not calibrated.

2.2 Linear and Quadratic stochastic estimation

In this section, following the review of Gordeyev (Gordeyev, 2000), we provide a descrip-
tion of the Linear and the Quadratic Stochastic Estimation.

The Stochastic Estimation is a method used to extract structures by approximating
an average field in terms of the event data at some given locations. In other words,
SE reconstructs a flow field, by using a knowledge of the flow at some selected points
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2.2. LINEAR AND QUADRATIC STOCHASTIC ESTIMATION

in space and time. Given a vector of data E, which represent the measured events at
points and time (x′, t′), the approximation of u by stochastic estimation, denoted by û,
is taken as the conditional average 〈u | E〉. Adrian, in 1977, introduces a technique
to estimate conditional averages for any arbitrary conditions. The idea is to expand
〈u | E〉 in a Taylor series about E = 0 as

ûi = 〈u | E〉 = LijEj +NijkEjEk + . . . (2.16)

(repeated subscripts are summed) and truncate this series at some degree (Adrian
(1977),Adrian (1979),Naguib et al. (2001)). The unknown coefficient tensors L,N , . . .
can be determined by requiring the mean-square error between the approximation and
the conditional average to be minimal,

〈[〈u | E〉 − LijEj −NijrEjEr − . . .]2〉 → min

The minimization leads to the orthogonality principle, which states that the error must
be statistically uncorrelated with each of the event data

〈[〈u | E〉 − LijEj −NijrEjEr − . . .]Ek〉 = 0

The case where the series contains only the first order term, simple algebra leads to a
set of linear algebraic equations for the estimates of the coefficients Lij

〈EjEk〉Lij = 〈uiEk〉 (2.17)

This Stochastic Estimation then is called the Linear Stochastic Estimation (LSE),

ûi = linear estimator of 〈u | E〉 = LijEj (2.18)

where Lij = Lij(x,x′) and x′ is the location of the event data. Cross correlation
tensor 〈EjEk〉 between each of the event data and between the data and the quantity
to be estimated 〈uiEk〉 must be obtained by independent means (Adrian (1977)). If
u = u(x, t) is the velocity field and the event data consists of velocity vectors E =
(u′, t′) at the location x′, then 〈EjEk〉 = 〈ujuk〉 is the Reynolds stress tensor and
〈uiEk〉 = 〈uiu′k〉 = Rik(x,x′, t, t′) is the two-point, second-order, space-time velocity
correlation. Thus, the knowledge of Rik gives the ability to approximate any conditional
averaged quantities.

LSE, as well as POD, uses the cross-correlation tensor R to extract structures from
the flow. The connection between LSE and POD is straightforward to be found (Breteton
(1992)). Recall, that general POD decomposes the flow into an infinite number of
orthogonal modes φn(x; t), for them to be found from the eigenproblem

Rb = λ b

The eigenmodes are used to decompose the flow field as

u(x, t) =

∞∑

n=1

an(t)φn(x) (2.19)
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2. BACKGROUND ON EMPLOYED TECHNIQUES

The cross-correlation tensor itself can be represented in terms of the orthogonal
functions as

R(x′,x; t′, t) =
∞∑

n=1

λnφn(x′, t′)φn(x, t) (2.20)

Using (2.17), (2.19) and (2.20), the equation (2.18) can be rewritten as

u(x′; t′) = u(x, t)
∞∑

n=1

φn(x, t)fn(x′, t) (2.21)

where fn(x′, t) = λnφn(x′, t)/∑∞
n=1 λnφ

2
n(x′, t′) can be viewed as relative contribution

or weight of each mode,φn(x, t), to the conditional average. Therefore, LSE can be
treated as a weighted sum of an infinite number of POD modes. Hence, when two or
more distinctive structures exist in the flow, LSE could give a wrong representation of
coherent structures, while POD decompose the flow in terms of all the orthogonal modes.

If LSE does not capture the conditional average accurately, the estimation could
be improved to draw out more of the details. Thus LSE is extended to the Quadratic
Stochastic Estimation (QSE) (Adrian (1979),Naguib et al. (2001)) by including the next
term in the Taylor series (2.16). The minimization of the mean-square error leads to a

set of linear equation for Lquad
ij and Nijk

〈EjEk〉Lquad
ij + 〈EjErEk〉Nijr = 〈uiEk〉

〈EjEkEs〉Lquad
ij + 〈EjErEkEs〉Nijr = 〈uiEkEs〉

(2.22)

where Lquad
ij is in general different from Lij .

Note that as long as the temporal separation is zero for all the correlations, then
some of the above equations become linearly dependent because

〈E1E2〉 = 〈E2E1〉

Thus, the number of coefficients in (2.22) can be greatly reduced because no single
combination of subscripts needs to be repeated.

Finally, the LSE/QSE can be used to estimate directly the whole velocity field by
using some measured events at given points. However, for our applications, the procedure
to set up the full correlation matrices is very demanding in terms of computational costs.
For this reason the LSE/QSE (and the estimation techniques described hereafter) are
used to estimate the time dependent modal coefficients ar(t) instead of the whole space-
time velocity fields u(x, t). Then, in the following we set u = ar as conditional event in
Stochastic Estimation.

2.3 Spectral stochastic estimation

One of the difficulties of accurately applying Adrian’s classical approach described above
is the preservation of the time scales associated with the conditional event estimate. For
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2.4. GENERAL LEAST-SQUARE TECHNIQUE

this (Ewing & Citriniti, 1999) introduce the Spectral Stochastic Estimation substituting
the spatial conditional average with a spectral term. In this way not only the amplitude
of conditional eddy is preserved, but also the characteristic frequencies between the
unconditional and conditional events (Tinney et al. (2006)).

Moreover, the linear estimate of a random variable is accurate only for separations
between the unconditional and conditional terms that are smaller than the Taylor mi-
croscale. Thus, the spectral features of conditional estimates should be considered more
carefully where spatial separations greater than the Taylor microscale (according to
Adrian 1996) exist between the estimated structure and the unconditional source field.

Following (Ewing & Citriniti, 1999) the Fourier coefficients of the unconditional field
are used to estimate the Fourier coefficients of the conditional event. Being

ûf
i =

∫∞
−∞ ui(t)e

−ift dt

Ef
i =

∫∞
−∞Ei(t)e

−ift dt

the f − th coefficients of the Fourier transforms of the conditional and the unconditional
event respectively, the SLSE gives the estimate ûf

i :

ûf
i = 〈uf | Ef 〉 = Γf

ijE
f
j (2.23)

Similarly for the LSE the error between the approximation and the conditional av-
erage can be written for each frequency

〈[〈uf | Ef 〉 − Γf
ijE

f
j ]2〉

The minimization of the error leads to the same orthogonality principe of the LSE but
in the frequency domain. The spectral estimation coefficients are then obtained by the
solution of the linear system

〈Ef
j E

f
k

∗〉Γf
ij = 〈uf

i E
f
k

∗〉 (2.24)

where ∗ is the complex conjugate.

The Spectral Stochastic Estimation, differently from LSE and QSE, preserves the
spectral characteristics of the conditional events and, in case of time lag between the
unconditional source and the conditional event, due to the fact that the correlation in
frequency is equivalent to a convolution in time, it contains the separation in time of the
estimated condition.

2.4 General least-square technique

From a general point of view we describe briefly a least-squares technique. Smooth
curves can be fit to data in a variety of ways using the least-square technique LSQ. The
functions that are used for the fit do not need to be integer powers of the independent
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2. BACKGROUND ON EMPLOYED TECHNIQUES

variable. It is possible to use any function as long as it is linearly related to the dependent
variable through a constant. For example any function y can be expressed as follows:

y = a1f1(x) + a2f2(x) + · · · + anfn(x) =
n∑

j=1

ajfj(x)

The error at any particular data point is given by:

ei = yi − [a1f1(x) + a2f2(x) + · · · + anfn(x)]

and the total error for a set of N points is:

S =

N∑

i=1

e2i =

N∑

i=1

{yi − [a1f1(x) + a2f2(x) + · · · + anfn(x)]}2

In order to minimize the error we differentiate the former with respect to each of the
constants aj and set each resulting equation equal to zero. For example:

∂S

∂a1
= 2

N∑

i=1

f1(xi){yi − [a1f1(x) + a2f2(x) + · · · + anfn(x)]} = 0

Therefore, n equations of the following form result:

a1

N∑

i=1

f2
1 (xi) + a2

N∑

i=1

f1(xi)f2(xi) + · · · + an

N∑

i=1

f1(xi)fn(xi) =
N∑

i=1

yif1(xi)

a1

N∑

i=1

f2(xi)f1(xi) + a2

N∑

i=1

f2
2 (xi) + · · · + an

N∑

i=1

f2(xi)fn(xi) =
N∑

i=1

yif2(xi)

...

a1

N∑

i=1

fn(xi)f1(xi) + a2

N∑

i=1

fn(xi)f2(xi) + · · · + an

N∑

i=1

f2
n(xi) =

N∑

i=1

yifn(xi)

Consequently this represents a system of linear equations of the form:

[A]~a = ~b

where

Ajk
=

N∑

i=1

fj(xi)fk(xi)

and

bj =
N∑

i=1

yifj(xi)
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or




∑
f2
1

∑
f1f2

∑
f1f3 · · · ∑

f1fn∑
f2f1

∑
f2
2

∑
f2f3 · · · ∑

f2fn

...
...

...
...

...∑
fnf1

∑
fnf2

∑
fnf3 · · ·

∑
f2

n







a1

a2
...
an


 =




∑
yif1(xi)∑
yif2(xi)

...∑
yifn(xi)


 (2.25)

Thus, solution of the system of linear equations (2.25) gives the desired unknown coef-
ficients ai.

2.5 Centroidal Voronoi Tessellation

Referring to (Du et al., 1999) we furnish a simple description of the Centroidal Voronoi
Tessellation. Let us start from the definition of a Voronoi Tessellation.
Definition. Given a region Ω and a set of points {zi}N

i=1, the generators, a Voronoi
Tessellation is a partition of Ω into regions {Vi}N

i=1 enclosing the points closer, according
to the Euclidean distance, to zi than to any other generator. Each Vi is the Voronoi
region associated to zi., and is defined by

Vi = {z ∈ Ω||z − zi| < |z − zj |, j = 1, . . . , N and j 6= i}

The set {Vi}N
i=1 is a Voronoi tessellation of Ω.

In figure 2.2 an example of Voronoi tessellation corresponding to a random distribu-
tion on a square domain is plotted. The Voronoi regions are known also as Dirichlet

(a) Voronoi tessellation. (b) Voronoi tessellation in nature.

Figure 2.2: Voronoi tessellation

regions, area of influence polygons, Meijering cells, Thiessen polygons, and S-mosaics,
depending on the application.
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2. BACKGROUND ON EMPLOYED TECHNIQUES

For each region V of the Voronoi tessellation, given a density function ρ defined in
Ω, the mass centroid z∗ of the region is defined as

z∗ =

∫
V
zρ(z)dz∫

V
ρ(z)dz

A Centroidal Voronoi Tessellation (CVT) is a particular Voronoi tessellation where the
generators of the region are themselves the mass centroids, i.e. zi = z∗i . Then, a CVT is
a collection of Voronoi regions in which each generator is located at the same point as its
mass centroid. This situation is special since, in general, arbitrarily chosen points are not
the centroids of their associated Voronoi regions. In general this CVT tessellation is not
unique. Centroidal Voronoi tessellations, because their natural optimization properties,
are used in many scientific and engineering applications as image compression, quadra-
ture, finite difference methods, distribution optimal of resources, biology, statistics, and
the territorial behavior of animals. (see (Du et al., 1999)). In figure 2.2(b) an example
of distribution of territory in nature. The territories are quasi-polygonal and they are
very close to a Voronoi tessellation.

In order to compute a CVT we refer in this work to a simple and one of the most
adopted methods, the Lloyd algorithm (see Du et al. (2007) for a review on the conver-
gence of the algorithm). The method is essentially an iterative procedure consisting in
sequential Voronoi tessellations and deplacement of the generator in the centre of mass
of the associated region. The procedure is stopped when a criterion of convergence is
reached. The algorithm is summarized below.

0. Start with an initial distribution of generators {zi}N
i=1

1. Construct the Voronoi Tessellation associated to the generators {zi}N
i=1

2. Take as new generators the centre of mass of the regions {Vi}N
i=1, i.e. {zi}N

i=1 =
{z∗i }N

i=1 calculated by using a given density function ρ(z).

3. Repeat steps 1 and 2 until convergence is met.

When the convergence is reached, the generators correspond to the centre of mass of
each region. The resulting tessellation is a Centroidal Voronoi Tessellation.
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Chapter 3

Flow setup and numerical
simulation

The flow over an infinitely long square cylinder symmetrically confined by two parallel
planes is considered. A sketch showing the geometry, the frame of reference and the
adopted notation is plotted in figure 3.1. At the inlet, the incoming flow is assumed to
have a Poiseuille profile with maximum center-line velocity Uc. The considered Reynolds
numbers, based on the maximum center-line velocity Uc Re = UcL/ν, are taken in the
interval Re = (40, 180) and Re = 300.

The numerical code used in this study is AERO, a compressible Navier-Stokes code.
AERO was developed by Bruno Koobus (Université Montpelllier II) and Charbel Farhat
(Stanford University). We thank Bruno Koobus and Alain Dervieux (INRIA Sophia-
Antipolis) to authorize the use of the code for this work. Details concerning the grids and
the numerical set up are reported in Buffoni et al. (2006) and they are briefly summarized
hereafter.

In AERO the Navier-Stokes equations for compressible flows are discretized in space
using a mixed finite-volume/finite-element method applied to unstructured tetrahedriza-
tions. The adopted scheme is vertex centered and P1 Galerkin finite elements are used
to discretize the diffusive terms.

Figure 3.1: Computational domain Ω.
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3. FLOW SETUP AND NUMERICAL SIMULATION

A dual finite-volume grid is obtained by building a cell Ci around each vertex i
through the rule of medians. The convective fluxes are discretized on this tessellation,
i.e. in terms of fluxes through the common boundaries shared by neighboring cells.

The Roe scheme (Roe (1981)) represents the basic upwind component for the nu-
merical evaluation of the convective fluxes F :

ΦR (Wi, Wj , ~n) =
F (Wi, ~n) + F (Wj , ~n)

2
− γsP

−1|PR| (Wj −Wi)

2

in which, ΦR (Wi, Wj , ~n) is the numerical approximation of the flux between the i-th
and the j-th cells, Wi is the solution vector at the i-th node, ~n is the outward normal to
the cell boundary and R (Wi, Wj , ~n) is the Roe matrix. The matrix P (Wi, Wj) is the
Turkel-type preconditioning term, introduced to avoid accuracy problems at low Mach
numbers (Guillard & Viozat (1999)). Finally, the parameter γs, which multiplies the
upwind part of the scheme, permits a direct control of the numerical viscosity, leading
to a full upwind scheme for γs = 1 and to a centered scheme when γs = 0. The spatial
accuracy of this scheme is only first order. The MUSCL linear reconstruction method
(“Monotone Upwind Schemes for Conservation Laws”), introduced by van Leer (1977),
is employed to increase the order of accuracy of the Roe scheme. This is obtained by
expressing the Roe flux as a function of the reconstructed values ofW at the cell interface:
ΦR (Wij , Wji, ~nij), where Wij is extrapolated from the values of W at nodes i and j.
A reconstruction using a combination of different families of approximate gradients (P1-
elementwise gradients and nodal gradients evaluated on different tetrahedra) is adopted,
which allows a numerical dissipation made of sixth-order space derivatives to be obtained.
The MUSCL reconstruction is described in detail in Camarri et al. (2004), in which the
capabilities of this scheme in concentrating the numerical viscosity effect on a narrow-
band of high-frequency fluctuations is also discussed.

The time marching algorithm is implicit and based on a backward difference scheme.
A first-order semi-discretization of the jacobians is adopted together with a defect-
correction procedure (Martin & Guillard (1996)); the resulting scheme is second-order
accurate in time.

Characteristics based inflow and outflow boundary conditions are used. At the inflow
the Poiseuille flow is assumed to be undisturbed. Periodic boundary conditions are
imposed in the spanwise direction and no-slip conditions are forced on the cylinder and
on the lateral walls.

As in Buffoni et al. (2006) two different computational domains are used, for carrying
out two-dimensional and three-dimensional simulations, which differ only for the span-
wise extent of the domain. In both cases, with reference to figure 3.1, the blockage ratio
β = L/H is equal to 1/8 and Lin/L = 12 and Lout/L = 20. For two-dimensional simula-
tions, the spanwise length adopted is Lz/L = 0.6, and it was systematically checked that
the simulated spanwise velocity was negligible. For the three-dimensional simulations,
the spanwise length of the domain is Lz/L = 6. This value in Buffoni et al. (2006) was
selected following the experimental results for the unconfined square-cylinder flow (Luo
et al. (2003)), which show a maximum spanwise length of the three-dimensional struc-
tures equal to 5.2L and the indications given in Sohankar et al. (1999) and Saha et al.
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(2003) for the numerical study of the three-dimensional wake instabilities of a square
cylinder in an open uniform flow. The used grids are composed by 7.5·105 and by 6.6·106

elements for the two-dimensional and the three-dimensional simulations respectively.
Since we intend to simulate an incompressible flow, the simulations were performed

by assuming that the maximum Mach number of the inflow profile is M = 0.1. This
value allows compressibility effects to be reasonably neglected in the results.

The flow shows non trivial dynamical features. A von Kármán vortex street devel-
ops past the cylinder when the Reynolds number increases above a critical value as a
result of a global instability. This value is a function of the blockage ratio, i.e. the ratio
between the cylinder side and the channel height (L/H).
The critical Reynolds number, based on the mass inflow, varies in the literature between
50 and 90 (Okajima, 1982; Sohankar et al., 1999; Breuer et al., 2000). In Davis et al.
(1984) it was found that the non-dimensional shedding frequency (the Strouhal number)
reaches a maximum and then decreases as the Reynolds number increases. This phe-
nomenon is generally ascribed to the shift of the separation point from the trailing to
the leading square corners. The resulting flow is also characterized by the interaction
of the vortical wake and the walls leading to some peculiar features, like the fact that
the vertical position of the spanwise vortices is opposite to the one in the classical von
Kármán street (Camarri & Giannetti, 2007). In figure 3.2, where istantaneous vorticity
isocontours obtained for Re = 180 are plotted, this phenomenon is clearly visible.

Figure 3.2: Instantaneous isocontours of vorticity of a snapshot at Re = 180.

Although this peculiar structure of the vortex street, even at Re = 180 the behavior of
the aerodynamic forces is the one typically found in 2D simulations of bluff body flows.
Indeed, the time variation of the lift coefficient is perfectly periodic at the shedding
frequency. Thus, for Reynolds numbers Re = (40, 180) the flow can be considered two-
dimensional.
Two different three-dimensional instability modes, initially identified in circular cylinder
flows, have been found for unconfined square cylinders in experiments (Luo et al., 2003)
and in the Floquet instability analysis (Robichaux et al., 1999). The first one, mode
A, occurs at lower Reynolds and is characterized by the formation of large-scale wavy
vortex loops. The other one, mode B, is characterized by shorter, fine-scale vortex loops.
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3. FLOW SETUP AND NUMERICAL SIMULATION

Figure 3.3: Streamwise and spanwise vorticity components in the wake at Re = 300.
Isosurfaces correspond to ωz = −0.4 (black) and ωz = 0.4 (gray) are plotted. The
streamwise tubes identify ωx = 0.4 and ωx = −0.4 respectively.

For unconfined square cylinders, mode A was found to occur at Re ≃ 160 and mode B at
Re = 190 − 200. Indeed, the flow at Re = 300 is completely three-dimensional (for the
confined square cylinder the mode B occurs at Re ≃ 220), and the situation is even more
complex, due to instabilities developing in the span-wise direction. The flow is no longer
periodic and exhibits complicated flow patterns. As shown in (Buffoni et al. (2006))
the developed three-dimensional flow presents small vortical loops in the wake and they
connect the vortex tubes of the von Kármán street. These spanwise vortex tubes are
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Figure 3.4: Time variation of lift coefficient Cl at Re = 300.
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in turn corrugated and distorted by the motion induced by the streamwise vortices. In
figure 3.3 isosurfaces of streamwise and spanwise vorticity are shown. It is clear the
complexity of the flow structures, with the evidence of strongly three-dimensional flow
patterns.

In figure 3.4 the time history of the lift coefficient calculated on the cylinder is
plotted. The three-dimensional effects of the spanwise dynamics leading to significant
modulations of the amplitude of lift oscillations, even in the transient of the vortex
shedding.
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Chapter 4

A non-linear observer for an
unsteady three-dimensional flow

The problem of deriving an accurate estimation of the velocity field in an unsteady flow,
starting from a limited number of measurements, is of great importance in the design of
a feedback control. Indeed, the knowledge of the velocity field is a fundamental element
in deciding the appropriate actuator reaction to different flow conditions.
Also in other applications it may be necessary, or advisable, to monitor the flow condi-
tions in regions which are difficult to access, or where probes cannot be fitted without
causing interference problems. Similar problems arise in physics when trying to filter
data resulting from a chaotic system, see for example (Abarbanel et al., 1993).

The starting point is the Galerkin representation of the velocity field u(x, t) in terms
of Nr empirical eigenfunctions, φi(x), obtained by Proper Orthogonal Decomposition
(POD) (see section §2.1.2).

For a given flow, the POD modes can be computed once and for all, using Direct
Numerical Simulation (DNS), or on highly resolved experimental velocity fields, such as
those obtained by particle image velocimetry. An instantaneous velocity field can thus
be reconstructed by estimating the coefficients ai(t) of its Galerkin representation.

One simple approach to estimating the POD coefficients is to approximate the flow
measurements in a least square sense, as done, for instance, in (Galletti et al., 2004). A
similar procedure is also used in the estimation based on gappy POD, see (Everson &
Sirovich, 1995), (Venturi & Karniadakis, 2004) and (Willcox, 2006). Another possible
approach, the linear stochastic estimation (LSE), is based on the assumption that a
linear correlation exists between the flow measurements and the value of the POD modal
coefficients (see, for instance, Bonnet et al. (1994)).

However, these approaches encounter difficulties in giving accurate estimations when
three-dimensional flows with complicated unsteady patterns are considered, or when a
very limited number of sensors is available. Under these conditions, for instance, the
least squares approach mentioned above (LSQ) rapidly becomes ill conditioned. This
simply reflects the fact that more and more different flow configurations correspond to
the same set of measurements. To circumvent these problems, many contributions in
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4. A NON-LINEAR OBSERVER FOR AN UNSTEADY THREE-DIMENSIONAL FLOW

the literature have sought to determine the best sensor placement (see e.g. Schmit &
Glauser (2005), Cohen et al. (2004), Cohen et al. (2006), Willcox (2006)). For example
in Willcox (2006), a systematic approach to sensor placement is formulated within the
gappy POD framework using a condition number criterion.

In order to improve estimation performance, extensions of the above methods have
been proposed: quadratic stochastic estimation (QSE) Adrian (1977), Naguib et al.
(2001) and spectral linear stochastic estimation (SLSE) Ewing & Citriniti (1999). They
allow more accurate estimations than LSQ or LSE methods, but, in fact, neither takes
into account the underlying dynamic model that the POD coefficients must satisfy, i.e., a
finite dimensional equivalent of the Navier-Stokes equations that is obtained by Galerkin
projection of the flow equations on the POD modes retained for the representation of
the velocity field.

In the literature one finds estimation techniques that take into account the under-
lying partial differential equations, using control theory tools Falb (1970). Classical
estimations based on such methods are those applied in meteorology data assimilation
where the mismatch between predictions and observations is minimized as function of
the initial conditions (Gunzburger, 2003; Le Dimet & Talagrand, 1986) (4D-VAR) (see
Park (2009) for a review). More recent applications of these ideas are those used in
seismology, where the source of an earthquake is sought once the ground displacement is
measured Akcelik et al. (2003). Computing the exact solution of such inverse problems
requires large computational facilities for realistic cases since the state equation, the
adjoint equation and the optimality conditions must be simultaneously solved. In this
sense, the novelty of the present study is to discuss an approach that combines a linear
estimation of the coefficients ai(t) with an appropriate non-linear low-dimensional flow
model. Compared to the classical inverse problems mentioned above, the solution is
obtained with a negligible computational effort, at the cost of obtaining an approximate
solution. The degree of approximation will be related to the possibility of an actual
low-order representation.

The approach that we propose combines a linear estimation of the coefficients ai(t)
with an appropriate non-linear low-dimensional flow model. This approach is similar to
the one of reduced 4D-VAR, where a low dimensional space is used to approximate only
the control variables (Robert et al., 2005; Robert & Verron, 2006) or also to build the
low order model and its adjoint to be used in the optimization procedure (Cao et al.,
2007; Daescu & Navon, 2008).

Thus, our objective is to understand whether a non-linear observer outperforms
existing linear flow observers.

Moreover, instead of what was done, for example, in Hoepffner et al. (2005), this
study is confined to a deterministic framework, since the model, as well as the mea-
surements, are supposedly not affected by noise. The measurements are not affected by
noise in the sense that we do not take into account the errors introduced by the actual
instruments. The model is not affected by noise in the sense that although it will only
be approximate, we will not try to mimic the model deviations by adding noise with ap-
propriate statistical characteristics. Our results will show that, within this framework,
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4.1. FLOW SET UP AND LOW ORDER MODEL

dynamic estimations based on low-order models turn out to be more satisfactory than
static approaches, i.e., those which use no model.

In addition, we address the issue of the sensitivity of the proposed approach to sensor
type and location. Finally, we present applications to a two-dimensional periodic flow
and to a flow, which is characterized by a significant three-dimensionality and non-
periodic dynamics.

4.1 Flow set up and low order model

We consider the flow configuration reported in chapter §3. Two Reynolds numbers
Re = UcL/ν were considered, one at which the flow is two-dimensional (Re = 150) and
the other one leading to a three-dimensional flow in the wake (Re = 300). We used the
computational domain shown in figure 3.1, L/H = 1/8, Lin/L = 12, Lout/L = 20 and
Lz/L = 0.6 for the two-dimensional case, whereas L/Lz = 6 for the three-dimensional
one. All the quantities mentioned in the following have been made non-dimensional
by L (side of the cylinder) and Uc (center-line velocity at inflow). The behaviour of
the two flows given by DNS are described in section §3. Let us underline that in the
two dimensional flow obtained at Re = 150 is a classic periodic vortex street. While
the three-dimensional case is much more complex; the flow is not periodic and presents
complicated flow structures.

The POD modes φk(x) are found using the snapshot method (Sirovich (1987), section
§2.1.1)

φk =
∑N

i=1 b
k
i U

(i)

where U (i) = u(x, ti) are simple velocity flow snapshots taken at times ti ∈ [0, T ], N is
the number of snapshots, k ∈ {1, . . . , N}. Only a limited number of modes, Nr, is used
to represent the velocity field. In particular we chose Nr = 6 for the two-dimensional
case. For the three-dimensional case, because of the compexity of the flow, we derived
two models with larger numbers of modes Nr = 20 and Nr = 60, respectively.

A Galerkin projection of the incompressible Navier-Stokes equations over the retained
POD modes leads to the Nr-dimensional dynamical system

Rr(a(t)) = ȧr(t) −Ar − Ckrak(t) +Bksrak(t)as(t) = 0
ar(0) = (u(x, 0) − u(x),φr)

(4.1)

where a(t) : I → R
Nr and a(t) = {a1(t), . . . , aNr(t)}; r, k and s run from 1 to Nr and

the Einstein summation convention is used. As explained in section §2.1.2 the scalar
coefficients Bksr come directly from the Galerkin projection of the non-linear terms in
the Navier-Stokes equations, and they can easily be expressed in terms of the POD
modes. The scalar terms Ar and Ckr are calibrated. Note that the term Ar appears
because in this case we extracted the time average field on [0, T ] from the snapshots.

In this chapter we consider the two calibration methods described in section §2.1.2.
The first consists in solving an inverse problem, where the coefficients Ar and Ckr are
found in order to minimize the difference, measured in the L2 norm, between the model
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4. A NON-LINEAR OBSERVER FOR AN UNSTEADY THREE-DIMENSIONAL FLOW

prediction and the actual reference solution (called state calibration). The resulting
model for the two-dimensional flow configuration considered here is very accurate in
describing the asymptotic attractor (Galletti et al. (2004) and Galletti et al. (2006)).
For the three-dimensional case, it was shown in Buffoni et al. (2006) that the calibrated
model is capable of accurately reproducing the complicated flow dynamics resulting from
the interaction of the three-dimensional vortex wake with the confining walls inside the
calibration interval. Although very accurate, the computational cost of obtaining this
model is not negligible, since in the three-dimensional case the number of modes is larger.

For this reason, we use also the alternative method, the dynamics calibration, that
gives a reasonable model at the cost of a matrix inversion. The time interval where the
calibrations are performed [0, T ] is the same as that considered for building the POD
modes.

4.2 Non-linear observer

Our aim is to provide an estimation of the modal coefficients starting from Ns flow
measurements fk, k ∈ {1, . . . , Ns}. Let âr(t) be the projection of the velocity field
u(x, t) over the r-th POD mode and αr(t) be its estimated value at time t.

We assume that each measurement fk is a scalar quantity which depends linearly on
the instantaneous velocity field u(x, t). For instance, fk can be a point-wise measurement
of a velocity component, or of a shear stress, or it can be a spatial average of a linear
combination of velocity components.

The available spatial information may be exploited by using a LSQ approach (see
section §2.4 for details), as done in Galletti et al. (2004). At any given time τ of
measurement, thanks to the linearity of fk with respect to u(x, t) and to the modal
decomposition of the velocity field (see Eq. (2.4)), fk can be written in terms of POD
modes

fk (u (x, τ)) ≃
Nr∑

r=1

ar(τ)fk (φr) (4.2)

where fk (φr) is obtained by applying fk to the vector field associated to mode φr. For
instance, if fk is the measurement of the v-component of the velocity fk (φr) is the v-
component of the r-th POD mode. The following least-squares problem then has to be
solved for every τ where fk are available

min
{ω1(τ),...,ωNr (τ)}

Ns∑

k=1


fk (u (τ)) −

Nr∑

j=1

ωj(τ)fk

(
φj
)



2

(4.3)

where ωj(t) is an optimization variable representing the mode coefficient at time τ .
This minimization leads to a Nr-dimensional linear system of equations. Once this

system is solved, the estimated modal coefficients can be written

αj(τ) =

Ns∑

k=1

Υkjfk (u (τ)) (4.4)
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where Υ is a known rectangular matrix of size Ns × Nr. The error minimization (4.3)
leads to a linear representation of the estimated modes as functions of the measurements.
When the number of the modes retained is larger than the number of sensors, matrix Υ
is rank deficient. In such cases we opted for a Tikhonov regularization technique: among
the infinite number of solutions we chose the one that minimizes the sum of the squared
residuals and the norm of the solution multiplied by a small positive factor.

The LSE approach (section §2.2 for a review), conversely, exploits temporal rather
than spatial information and is based on the assumption that a linear relation exists
between the modal coefficients and the measurements

αj(τ) =

Ns∑

k=1

Λkjfk (u (τ)) (4.5)

where Λ is now an unknown rectangular matrix of sizeNs×Nr. This matrix is determined
by imposing that ∀r ∈ {1, . . . , Nr} and ∀k ∈ {1, . . . , Ns}

∫ T

0
âj(t) fk (u (t)) dt =

∫ T

0

Ns∑

m=1

Λmjfm (u (t)) fk (u (t)) dt (4.6)

The time interval [0, T ] is the same as that considered for building the POD modes.
Hence, since the left-hand side is known, a set of linear equations is obtained; these
uniquely define the matrix Λ.

The LSQ and and LSE both provide linear estimation of the modal coefficients.
Matrices Υ and Λ have the same size, although the coefficients are different. In the
following we overcome the assumption of a linear relation.

Let us assume that a certain number of measurements at consecutive times τm,
m ∈ {1, . . . , Nm} are available. The main idea of the dynamic-estimation approach
proposed here is to impose that the coefficients of the modal expansion of the velocity
field give the best approximation of the available measurements, using either LSQ (4.4)
or LSE (4.5), and that at the same time they satisfy as closely as possible the non-linear
low-order model (4.1).

In the LSQ case this is done by minimizing the sum of the residuals of (4.4) and
the residuals of (4.1) for all times τm. More precisely, let α(t) : R → R

Nr and α(t) =
{α1(t), . . . , αNr(t)}, we have

α(t) = argmin
ω(t)

Nm∑

m=1




Nr∑

r=1

R2
r(ω(τm)) + CR

Nr∑

r=1

(
ωr(τm) −

Ns∑

k=1

Υkrfk (u (τm))

)2

 (4.7)

where ω(t) = {ω1(t), . . . , ωNr(t)} is an optimization variable standing for the mode coef-
ficients vector at time t. The parameter CR is a weight, giving more or less importance
to the measurements (LSQ) or to the dynamic model in the definition of the residual
norm. This parameter could be replaced by a matrix that takes into account a priori
information like the reliability of some of the measurements versus others, or the model
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4. A NON-LINEAR OBSERVER FOR AN UNSTEADY THREE-DIMENSIONAL FLOW

error statistics. In the numerical experiments reported here, this parameter was set in
a heuristic way, leaving further developments to future investigations.

The minimization of this functional is reduced to a non-linear algebraic problem. As
in Galletti et al. (2006) and in section §2.1.2, a pseudo-spectral approach is used and
each ar(t) is expanded in time using Lagrange polynomials defined on Chebyshev-Gauss-
Lobatto collocation points. The necessary conditions for the minimum are obtained by
the adjoint method and they result in a non-linear set of algebraic equations for the
coefficients of the Lagrange polynomials. The solution is obtained by a Newton method,
which, in the present applications, usually converges in a few iterations. The complexity
of the method is equivalent to the complexity of any technique employed to solve a
system of non-linear algebraic equations. The systems we are dealing with are usually
small (Nr ·Nm unknowns) and hence the computational time to find the solution is small.

The solution to problem (4.7) provides an estimation for the POD modal coefficients
for all retained modes and for all instants at which measurements are available. This
enables the reconstruction of the entire flow field at the same instants through equa-
tion (2.4). The above method, therefore, represents a non-linear observer of the flow
state. In the following, it will be referenced as K-LSQ.

A similar approach can be obtained for the LSE technique, by substituting, in
Eq. (4.7), the residuals of Eq. (4.4) by those of Eq. (4.5). This approach is referenced as
K-LSE.

In the literature, there exist other flow estimation techniques that are non-linear in
the flow measurements. In the following we will compare the results of the proposed
non-linear dynamic estimation to one of them, the quadratic extension of LSE (Adrian
(1977), Naguib et al. (2001)). LSE is based on the assumption that equation (4.5) is just
the first term of a Taylor expansion with respect to the sensor measurements, whereas
QSE takes into account the second order term, too (see section §2.2). Hence, we have

αj(τ) =

Ns∑

k=1

Λkjfk (u (τ)) +

Ns∑

k=1

Ns∑

m=1

Ωkmjfk (u (τ)) fm (u (τ)) (4.8)

where the scalar coefficients Λkj and Ωkmj are obtained using double, triple and quadru-
ple correlations between measurements in an equation equivalent to (4.6). This approach
is referred to as QSE.

Once the matrices appearing in equations (4.4) (4.5) and (4.8) are computed, the
estimation of the modal coefficients at a certain time is based on the measurements made
at the same time.

In contrast, Ewing & Citriniti (1999), Tinney et al. (2006) proposed to take into
account integrated temporal data by assuming a linear dependence between the modal
coefficients and the flow measurements in a non-local way, and working in the frequency
domain. Let α̂ be the Fourier transform of α and f̂j that of fj , then for each frequency
we set

α̂j =

Ns∑

k=1

Γ̂kj f̂k (4.9)

36



4.3. RESULTS AND DISCUSSION

where Γ̂kj is a matrix obtained by appropriate ensemble averages and depends on the
frequency. In the time domain this amounts to a convolution integral between the
measurements and the time dependent matrix Γ. We call this approach, with reference
to section §2.3, SLSE. As compared to QSE and SLSE, the dynamic estimation procedure
that we propose is non-linear and, at the same time, it takes into account the evolution
of the modal coefficients in time by constraining such evolution to a model, in the weak
sense determined by equation (4.7).

Concerning the applicability of the methods described above, it is important to recall
that the LSE and LSQ approaches are readily applicable to real-time estimation, QSE
also, although the cost of this last approach scales as N2

s instead of linearly as in the
previous two cases. Conversely, the SLSE approach is more difficult to use for real-time
estimations, since it uses the whole temporal history of the measurements, collected in
a time interval, coupled together (linearly) via the Discrete Fourier Transform (DFT).
This implies that the estimation problem must be tackled after having collected enough
temporal information and it consists of a number of LSE problems equal to the number
of retained frequencies, plus additional DFT’s of the measurements and of the estimated
POD coefficients. Similarly to what was done in the SLSE approach, in the present
dynamic estimations the temporal histories of the measurements are coupled together
(non-linearly) by the dynamic POD model. This aspect can pose difficulties in a real-time
application. Nevertheless, a proposal for their prospective implementation for real-time
estimation is the following. The flow state at a given time t∗ could be estimated by
considering the measurements taken at that time and at the previous Nm − 1 ones.
At the following sampling time, the corresponding new measurements are added and
the oldest ones are dropped, keeping the number of measurements considered constant.
In other words, reconstruction is carried out using a fixed number of measurements
distributed in a time interval which is located before t∗, and which translates as time
increases. The sampling rate (i.e. τm − τm−1) and Nm can be tuned in order to decrease
the computational costs while granting the level of accuracy required by the particular
application. Moreover, when a new set of measurements is added, the Newton method
for solving the non-linear system would be restarted from the previous solution, which is
already close to the final solution, thus definitely reducing the number of iterations for
convergence (only one iteration could be necessary). In contrast with the other methods,
the proposed approaches need a working Galerkin model as a fundamental ingredient.
The construction of such a model can be carried out from the information needed to build
the POD database, a necessary step for all the methods considered here. Therefore no
additional information is needed as compared to other approaches. Moreover, when
using the dynamics calibration method, the cost of building such a model is negligible.

4.3 Results and discussion

The K-LSQ and K-LSE are used to reconstruct the flow in the configuration described
in section §3, both in the two- (Re = 150) and three-dimensional (Re = 300) cases.
Results are compared to those obtained by the most common techniques available in the
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literature and reviewed in the Introduction of this chapter.
Accuracy in the prediction of the single modal coefficients and in the reconstruction

of the velocity fields were evaluated. In both cases, differences with respect to the
reference case (DNS) were quantified in terms of relative error in the L2 norm, i.e., the
L2 norm of the difference between the estimated and the reference quantity divided by
the norm of the reference quantity.

Several parameters are involved in the set-up of the K-LSQ and K-LSE models.
They are related to (i) the dynamic POD model: number of retained modes, calibration
interval, number and temporal distribution of available snapshots; (ii) the selected flow
measurements: number, type and collocation.

As for the flow measurements, both velocity and shear-stress sensors were used.
While velocity measurements are often considered in the literature, due to their widespread
use in practice, shear-stress sensors are less common. Nevertheless, they were used here
mainly because they are challenging from a numerical point of view, as they involve spa-
tial derivatives of the POD modes. Also, they can be implemented in practice although
limitations of accuracy and time resolution may exist (see, for instance, Spazzini et al.
(1999)). Different sensor locations were tested, to account for the sensitivity of the pro-
posed approaches to sensor placement. Since the performance of the standard techniques
such as LSE or LSQ is influenced by sensor placement, some sensor configurations were
selected following the suggestions given for LSE in Cohen et al. (2004). On the other
hand, none of the considered sensor configurations is optimized for K-LSE or K-LSQ, in
order to verify the sensitivity of such methods with respect to sensor placement. In fact,
optimal sensor placement may turn out to be a time-consuming operation for complex
three-dimensional flows.

4.3.1 Two-dimensional case: Re = 150

The low-order model of the two-dimensional flow is obtained using 95 snapshots, uni-
formly distributed throughout two vortex shedding cycles (T ≃ 13 is the non-dimensional
duration of the time interval), and by retaining Nr = 6 modes, for a percentage of re-
constructed energy E ≈ 99.7%. In figure 4.1 the first component of the first and the
third POD mode is plotted. The calibration of the model is performed in the same
interval using 81 collocation points with state calibration method. As shown in Galletti
et al. (2004), the calibrated model accurately reproduces the flow inside and outside the
calibration interval.

For this rather simple flow, we consider the situation in which a limited number of
measurements are available, i.e. only 2 sensors. Three different configurations were an-
alyzed, two involving streamwise velocity sensors and one involving shear-stress sensors.

The velocity sensors were placed in relation to the spatial structure of the streamwise
component of the first two POD modes. In particular, in the first configuration one
streamwise velocity sensor is placed on the maximum of the first POD mode which
is closest to the cylinder (P1 ≃ (2.39, 0.52)) and one in the middle, between P1 and
the minimum of the second POD mode closest to the cylinder (≃ (1.96, 0.50)). The
second configuration has the first streamwise velocity sensor in P1 and the second one at
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Figure 4.1: First component of the first (top) and the third (bottom) POD modes.
Re = 150

point (1.98,−0.76). A third configuration was considered with two shear-stress sensors
located on the confining walls (y = ±4.0) at x = 4, in a region which satisfies the
following criteria on a shedding cycle: the rms value of the shear-stresses is maximum
and the reconstruction error of the shear-stresses is minimum for a given number of POD
modes.

The parameter CR in the formulation of the K-LSQ and K-LSE approaches (see
equation (4.7)) is set equal to 1. It has been checked that the results do not significantly
change if it varies in a neighborhood of this value.

The errors in the prediction of the modal coefficients given by LSQ, LSE, QSE,
K-LSQ and K-LSE in the first (velocity sensors) and third (shear-stress sensors) config-
urations are reported in tables 4.1(a) and 4.1(b)), respectively. The values obtained for
the second considered sensor configuration are not shown since they are very similar to
those of the first one.

The time interval over which reconstruction is performed is approximately 13 time-
units long (non-dimensional time); it contains two shedding cycles, and it starts just
after the end of the time interval on which the POD model was built and calibrated.

Tables 4.2(a) and 4.2(b) show the relative reconstruction errors on the velocity com-
ponents and on their fluctuating part. It appears that two (velocity or shear-stress)
sensors are not sufficient to obtain reliable predictions of the modal coefficients by LSQ
or LSE. Accuracy problems persist also with the QSE approach, even if in this case the
predictions are more accurate than those obtained with LSQ or LSE.

This leads to severe errors in the estimation of the fluctuating part of the velocity
field since the first two POD modes represent about 94.8% of the fluctuating energy.
Even if the mean flow energy is important with respect to the fluctuating energy, errors
in the modal coefficients lead to detectable errors in the reconstruction of the velocity
components. Note that the reconstruction errors on the vertical component are larger
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Tab. 4.1(a) e(a1)% e(a2)% e(a3)% e(a4)% e(a5)% e(a6)%

LSQ 36.33 64.75 280.55 265.66 145.31 117.94
LSE 71.06 27.12 99.71 97.97 99.91 99.93
QSE 20.67 13.03 20.66 40.99 91.05 88.01

K-LSQ 0.47 0.55 2.58 2.66 4.65 4.67
K-LSE 0.82 0.76 9.82 9.82 14.98 15.59

Tab. 4.1(b) e(a1)% e(a2)% e(a3)% e(a4)% e(a5)% e(a6)%

LSQ 63.61 84.81 109.32 107.17 100.53 101.39
LSE 46.87 91.97 102.83 100.99 101.40 100.21
QSE 33.32 56.00 78.28 41.62 95.31 75.64

K-LSQ 0.06 0.09 6.06 6.09 9.72 9.56
K-LSE 2.99 3.08 7.07 8.31 17.99 18.47

Table 4.1: Relative percentage errors (in L2 norm) on the estimation of the POD modal
coefficients (e(ai)) in the first (a) and third (b) sensor configuration. In this case time-
averaging is carried out over the estimation time period.

than those on the streamwise one. This is simply because the contribution of the mean
flow on the vertical component is much lower than on the streamwise component. Ta-
bles 4.1 and 4.2 show that both K-LSQ and K-LSE give an accurate estimation not only
of the first two modal coefficients, but of all the retained modes. This leads to a precise
estimation of the velocity field as well as of its fluctuating part. Moreover, the accuracy
of the results is very similar, whether using shear-stress or velocity sensors, indicating
a weak sensitivity of the approach to the type and location of the sensors. This is not
the case for the LSQ, LSE and QSE methods, which show a higher sensitivity to these
aspects, confirming what has already been reported in the literature. When the num-
ber of sensor increases, the difference between static and dynamic estimations tend to
reduce, as they both tend to the correct values of the Galerkin coefficients.

We compare our results to those of Cohen et al. (2004), Tab. 2(a) 13-th case. With
LSE and 2 sensors they found e(a1) ≃ 76.6% and e(a2) ≃ 15.1%, errors that are similar
to those reported in table 4.1(a) for LSE. Using the dynamic estimation, the errors on
the same coefficients are two orders of magnitude lower. Furthermore, using the K-LSQ
method and two shear-stress sensors (table 4.1(b)) the first two modal coefficients are
estimated with an error lower than 0.1%, i.e., three orders of magnitude lower than
LSE. The estimation results relative to K-LSQ and K-LSE are practically identical if
the low-order models are built either by state or dynamics calibration method.

The computational times are basically negligible for all cases: the static estimations
are accomplished within a fraction of a second (0.0003s for LSE on a normal personal
computer), whereas the dynamic estimations take a longer but still very small time
(K-LSQ: 0.6s, K-LSE: 0.3s on the same computer).

40



4.3. RESULTS AND DISCUSSION

Tab. 4.2(a) e(U)% e(V )% e(U ′)% e(V ′)%

LSQ 10.31 57.49 72.15 65.88
LSE 6.32 37.14 53.96 54.26
QSE 2.41 16.06 20.65 23.45

K-LSQ 0.63 3.97 5.39 5.80
K-LSE 0.69 4.42 5.93 6.46

Tab. 4.2(b) e(U)% e(V )% e(U ′)% e(V ′)%

LSQ 10.60 64.57 74.31 73.82
LSE 8.05 46.14 68.32 67.44
QSE 4.70 28.28 39.81 41.37

K-LSQ 0.65 4.10 5.54 6.00
K-LSE 0.77 4.91 6.54 7.17

Table 4.2: Relative percentage errors (in L2 norm) on the estimation of the velocity com-
ponents (e(U),e(V )) and of their fluctuating part (e(U ′),e(V ′)), in the first (a) and third
(b) sensor configuration. In this case time-averaging is carried out over the estimation
time period.

4.3.2 Three-dimensional case: Re = 300

In the case of Re = 300, as already seen in chapter 3, the flow patterns are definitely
more complex than those in the previous one.

Two low-order models of the developed three-dimensional flow were derived retaining
the first 20 or 60 POD modes obtained from a database of 151 snapshots, uniformly
distributed over eight vortex shedding cycles (≃ 52 non-dimensional time units from
360 to 412). Calibration was carried out in the same time interval using dynamics
calibration method (see section §2.1.2). The results obtained by integrating the dynamic
model within the calibration interval are reported in figures 4.2 and 4.3, in which the
calibrated POD coefficients are compared to those obtained from the projection of the
fully resolved Navier-Stokes simulations. A comparison between the results obtained
using the two different calibration techniques ( state and dynamics calibration) is also
provided. Model given by the state calibration is of course more accurate, although the
differences become almost negligible as the number of modes retained increases. In both
cases, the POD model shows a good accuracy inside the calibration interval. However,
in the three-dimensional case, these results tend to deteriorate outside the time interval
in which the calibration is performed, as shown in the following. Furthermore, we
analyze the ability of the retained POD modes to represent the flow field in the interval
in which the flow estimation is carried out. This time interval being about 82 time
units after the end of the calibration interval (at time 494), and is approximately 30
time units long, including approximately 4 shedding cycles. In table 4.3 we give the
minimum error that we can hope to achieve when reconstructing the fluctuating part
of the velocity components. The minimum error corresponds to the case where the
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Figure 4.2: Three-dimensional flow: projection of the fully resolved Navier-Stokes sim-
ulations over the POD modes (continuous line) vs. the integration of the dynamical
system inside the calibration interval, obtained retaining the first 20 POD modes (cir-
cles). The first row is relative to state calibration, the other to dynamics calibration.
Only some representative coefficients are shown.

estimated POD coefficients coincide with those obtained by projecting the reference
Navier-Stokes solution over the POD modes, i.e., âr(t) = αr(t). This error is computed
over the entire domain, and over a subset defined by 0 ≤ x/L ≤ 6, which corresponds
to the near wake of the cylinder. These errors are not small, even if we increase the
number of modes from 20 to 60, as shown in table 4.3. In fact, using a larger number
of POD modes does not help in general. Using 60 modes instead of 20 does not reduce
significantly the representation error because the modes from 20 to 60 are not statistically
relevant outside the reference interval where the snapshots were taken. In other words,
in order to increase the representativeness of those modes (20 to 60) outside the reference
interval one should take larger databases encompassing longer time lags. However, the
problem is that the convergence rate of the POD modes with respect to the number of
snapshots included in the database is very low. In this case, for example, using 60 modes,
the relative approximation error goes down from 40% to 30% when the database goes
from 151 snapshots to 912 snapshots, that is the limit of our computational resources.

The largest errors are on the spanwise component, since the retained POD modes
poorly represent this component of the velocity as it is not energetically significant, in
average, with respect to the remaining ones. This aspect might be improved working
on the construction of the POD basis choosing, for instance, a different norm which
gives more weight to the spanwise component of the velocity or which corresponds to a
quantity different from kinetic energy.
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Figure 4.3: Three-dimensional flow: projection of the fully resolved Navier-Stokes sim-
ulations over the POD modes (continuous line) vs. the integration of the dynamical
system inside the calibration interval, obtained retaining the first 60 POD modes (cir-
cles). The first row is relative to state calibration, the other to dynamics calibration.
Only some representative coefficients are shown

In other words, the accuracy of the best possible reconstruction is limited from above
by the capability of the POD modes to actually represent the flow outside the time inter-
val where the snapshots were taken, which however, increases using a larger snapshots
database, as shown in Buffoni et al. (2006). Note, however, that this problem is common
to all the considered reconstruction techniques, since they all use the POD representa-
tion of the velocity field. Because of the complexity of the flow, more measurements

e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

20 modes 57.48 43.41 95.57 47.27 43.21 99.37
60 modes 56.78 41.76 94.72 46.34 41.21 98.77

Table 4.3: Minimum errors on the fluctuating part of the velocity components. 20 and
60 POD modes, over the entire flow field (ent) and over the near wake (06). The time
interval considered is 82 non-dimensional time units (about 10 shedding cycles) away
from the time interval where the POD modes were derived.

were used for the reconstruction procedure, organized in five different configurations, two
involving only velocity measurements and three involving both velocity and shear-stress
measurements (see figure 4.4 for a hypothetical sensor configuration involving both ve-
locity and shear-stress sensors). In the last three configurations, the shear-stress sensors
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Figure 4.4: Hypothetical placement of velocity and shear-stress sensors.

were selected following the same criterion adopted in the 2D case, they are 14 in number
and in all considered cases are symmetrically placed on both the confining walls (y = ±4)
at x = 4 and z = {1.2, 1.5, 2.7, 3, 3.3, 4.5, 4.8}. The placement of the velocity sensors has
again been chosen on the basis of the spatial structure of the streamwise velocity of the
first 12 POD modes. The different configurations are listed below, together with a brief
description of the rationale for the placement of the velocity sensors:

a ) 24 velocity sensors distributed on 6 equispaced slices in the axial (z) direction;
on each slice, the sensors are on the lines connecting the maximum and minimum,
closest to the cylinder, of the first two POD modes. On each segment, the sensors
are approximately in the middle, but slightly closer to the extrema of the first POD
mode.

b ) 24 velocity sensors distributed on 4 equispaced slices in the axial (z) direction; on
each slice, 3 points are selected in the region of overlapping between the maxima and
minima of the low-frequency POD modes (modes 3, 4, 7, 8, 9 and 10) and 3 on the
overlapping region of the extrema of the vortex shedding modes (modes 1, 2, 5, 6, 7, 11
and 12) (see Buffoni et al. (2006) for details on the separation between low-frequency
and vortex-shedding POD modes).

c ) 14 shear-stress sensors and 10 velocity sensors distributed on 5 equispaced slices in
the axial (z) direction; on each slice, the velocity sensors are placed on the maximum
and minimum closest to the cylinder of the first POD mode.

d ) 14 shear-stress sensors and 10 velocity sensors. 6 equispaced slices in the axial (z)
direction are considered. On 4 slices, 2 velocity sensors are placed as in the previous
case. Two sensors are placed on the remaining slices, corresponding respectively to
the maximum and minimum of the third POD mode (low frequency mode).

e ) 14 shear-stress sensors and 6 velocity sensors located in the wake, at the points
reported in table 4.4.

The parameter CR of equation (4.7) was selected by experimenting with different values.
For example, in figure 4.5(a), we show the L2 relative error for the reconstruction by
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Figure 4.5: Relative percent error in the reconstruction of the fluctuating U component,
when varying CR: (a) KLSE, (b) KLSQ

Velocity sensor x y z Velocity sensor x y z
1 5.02 0.96 2.00 4 6.01 0.96 4.00
2 7.00 0.96 2.00 5 5.02 -0.96 4.00
3 6.01 -0.96 2.00 6 7.00 -0.96 4.00

Table 4.4: Positions of the velocity sensors in the three-dimensional case, configuration
(e).

K-LSE of the fluctuating U component, as a function of CR. The results are relative to
configuration (b). The plotted curve shows a minimum for CR = 0.2 and therefore in the
following we chose CR = 0.2 for K-LSE. Note that for CR ≥ 102 the results are basically
those of a simple LSE. A similar analysis was performed using K-LSQ (see figure 4.5(b))
and the best value that was selected is CR = 1.

Results relative to configuration (b) are reported in figure 4.6, where some represen-
tative modal coefficients predicted by the POD model calibrated by dynamics calibration
with 20 modes, LSQ, LSE, K-LSQ, K-LSE and SLSE are plotted, together with the pro-
jection of the DNS velocity fields on the corresponding POD mode. Results for configu-
ration (b) are shown because the sensor placement is appropriate for the LSE method,
as already discussed, and this makes the comparison with the proposed approaches more
comprehensive.

In figure 4.6, left column, one can observe that, in contrast with the two-dimensional
case and as previously stated, the POD model is less accurate outside the calibration
interval. However, long after the end of the calibration interval, the model remains stable,
and the error bounded. The results obtained with the other sensor configurations or with
model given by state calibration are similar to those reported in figure 4.6, except for LSE
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Figure 4.6: Estimation of some representative modal coefficients in the three-dimensional
case, for sensor configuration (b) and far from the calibration interval, together with
the reference values evaluated from the DNS simulation. Note that the same graph
is reported in the three columns but the axis scales are different. Model by dynamics
calibration with 20 modes.
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SC (a) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSQ 63.54 49.77 101.11 48.78 44.92 106.65
KLSE 62.63 48.37 100.95 47.22 44.26 101.71
SLSE 66.39 49.12 104.92 49.77 46.59 110.60

SC (b) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSQ 64.67 49.77 102.26 49.94 48.35 108.64
KLSE 61.40 47.03 98.45 47.17 43.73 101.09
SLSE 95.77 91.14 110.56 91.15 89.14 112.42

Table 4.5: Reconstruction errors obtained with the dynamics calibration model and 20
modes for sensor configurations (a) and (b). Errors computed on the entire domain (ent)
and in the near wake (06).

and LSQ methods which are less accurate as they are more sensitive to sensor placement.
In figure 4.6 it is seen that LSE and LSQ, provide reasonable predictions only for the
first two modal coefficients, that are associated with the vortex-shedding dynamics. The
second modal coefficient, not shown in the figure, is identical to the first one except
for a phase shift of π/2 in time. However, the results in terms of approximation are
the same. The predictions of the remaining modes are completely unreliable. When
dynamic estimation is applied, or when the SLSE approach is used, predictions are
definitely improved. In particular, this is true for modes like a1 or a11 that are related
to the vortex-shedding, i.e., almost periodic with a period that is the same or a multiple
of the vortex-shedding period. The prediction of the remaining modes is less accurate
(see a3 and a20), especially when very low frequencies are dominant, as in the case of a3.
However, the overall accuracy is significantly improved in comparison with the LSQ and
LSE approaches alone. The static estimations are accomplished within a fraction of a
second (0.0012s for LSE), whereas the dynamic estimations still take less than a minute
(K-LSQ: 21s, K-LSE: 25s).

In tables 4.5 and 4.6, the actual errors obtained using 20 modes are given. The er-
rors of LSE and LSQ are not included since they are larger than the others. We observe
that the dynamic approaches are systematically more accurate than SLSE and that the
reconstruction errors can be considered satisfactory as they are close to the minimum
error possible (see table 4.3). Furthermore the reconstruction errors progressively in-
crease moving away from the cylinder in the downstream direction. Concerning the
spanwise component of the velocity, as previously discussed, errors are large since the
retained POD modes themselves poorly represent this component of velocity (see tables
4.5 and 4.6).

As an example of an actual estimation in the physical space, we considered two points
located on the symmetry plane orthogonal to the spanwise direction. They were selected
in order to represent the typical results obtained. In figure 4.7 we show the actual U ′

and V ′ components of the velocity obtained by DNS, the projection on the POD basis
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SC (c) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSQ 62.68 48.72 100.00 48.53 45.54 103.87
KLSE 66.76 51.78 99.42 53.94 51.87 103.85
SLSE 76.01 56.46 112.81 53.60 52.72 118.65

SC (d) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSQ 67.54 53.44 104.86 52.16 48.86 111.07
KLSE 64.35 51.14 101.01 52.06 50.58 105.30
SLSE 70.95 55.75 108.64 55.24 55.30 116.96

SC (e) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSQ 132.40 97.56 162.68 96.73 100.01 183.59
KLSE 64.37 49.63 99.49 52.10 50.20 103.12
SLSE 79.12 58.98 115.97 57.16 55.15 124.96

Table 4.6: Reconstruction errors obtained with the dynamics calibration model and 20
modes for sensor configurations (c), (d) and (e). Errors computed on the entire domain
(ent) and in the near wake (06).

SC (b) e(U ′
ent)% e(V ′

ent)% e(W ′
ent)% e(U ′

06)% e(V ′
06)% e(W ′

06)%

KLSE 20M 61.40 47.03 98.45 47.17 43.73 101.09
KLSE 60M 61.37 46.70 98.65 46.93 42.85 100.77

Table 4.7: Comparison between reconstruction errors obtained with model given by
dynamics calibration and 20 or 60 modes for sensor configuration (b). Errors computed
on the entire domain and in the near wake.

as well as the estimation obtained by K-LSE, using the dynamics calibration model, 20
POD modes and sensor configuration (b). We observe that the estimation is accurate for
the point in the wake where the time evolution is smooth. At the other point, located
on the horizontal axis in a region where highly three-dimensional phenomena take place,
we observe sudden bursts of activity that are filtered away by the estimation, at least
for the U component.

The K-LSQ, K-LSE and SLSE methods are similar in the sensitivity of the predictions
to sensors type and placement, which is generally low. Nevertheless, the predictions
given by the K-LSE method are systematically the most insensitive to sensor placement.
Table 4.7 compares the results obtained with 20 modes and those obtained with 60
modes, using the dynamics calibration model and sensor configuration (b). A slight
improvement of the estimation can be observed. The same conclusion applies for the
other sensor configurations not reported here. Using model obtained via state calibration
the results are basically the same as those shown here.

In figure 4.8 the velocity components obtained by DNS at t = 426.6 (a snapshot

48



4.3. RESULTS AND DISCUSSION

495 500 505 510 515 520 525

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Non−dimensional time

U’

 

 

DNS Proj. KLSE

495 500 505 510 515 520 525

−0.04

−0.02

0

0.02

0.04

Non−dimensional time

V’

 

 

DNS Proj. KLSE

(a)

495 500 505 510 515 520 525

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Non−dimensional time

U’

 

 

DNS Proj. KLSE

495 500 505 510 515 520 525

−0.5

0

0.5

Non−dimensional time

V’

 

 

DNS Proj. KLSE

(b)

Figure 4.7: Reconstruction of U ′ and V ′ components of the velocity at points (a) x/L =
2.55, y/L = 2.51, z/L = 3.00 , (b) x/L = 5.45, y/L = 0.00, z/L = 3.00.
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4. A NON-LINEAR OBSERVER FOR AN UNSTEADY THREE-DIMENSIONAL FLOW

outside the database used for the construction and calibration of the POD model) are
plotted together with their projections on the space of the retained POD modes. These
projections represent the best approximation of the flow which can be estimated with
the retained POD modes, and with the prediction given by the K-LSE method. It can be
seen that the main structures characterizing the streamwise and lateral velocity fields are
well reconstructed. As for the spanwise velocity component, the reconstruction accuracy
is not satisfactory, but this is due to the fact that it is one order of magnitude lower
than the other components, as already discussed.

The estimation of the POD modal coefficients and of the reconstruction of the flow
velocity field enable the reconstruction of the aerodynamical forces on the cylinder.
Indeed, we can define the lift and the drag coefficients on the square cylinder in the
classical way

Cl(t) =

∫
S

((p(x, t) − p0) · n̄+ T(x, t) · t̄) dS
1
2U

2
c S

· j̄

Cd(t) =

∫
S

((p(x, t) − p0) · n̄+ T(x, t) · t̄) dS
1
2U

2
c S

· ī

where p0, Uc are the reference pressure and velocity at the inflow respectively and T is
the viscous stress tensor.
The entire pressure field, and in particular the pressure field around the square cylinder,
is reconstructed by using the POD pressure coefficients obtained by the Poisson model
(2.15) described in section §2.1.2. The POD for pressure fields and the calibration
procedure of the resulted Poisson model are performed in the time interval [0, T ] as that
considered to compute the POD modes and the dynamical model for the velocity. The
number of POD pressure modes retained is Np

r = 20. In figure 4.9 the actual lift and drag
coefficients, outside the POD database and the calibration interval, are plotted together
with the coefficients obtained by using the projection of the entire flow fields onto the
retained POD modes Nr and Np

r and with Cl and Cd reconstructed by using the K-LSE
estimation with sensors configuration (b). The model provides a good reconstruction
of the aerodynamical forces. Indeed, the lift coefficient is well reconstructed with good
accuracy both in amplitude and in phase. The reconstruction of drag coefficient is
almost exact in phase but it is not accurate in amplitude. As for the spanwise velocity
component, this is due to the fact that the amplitude oscillation is small if compared
with the oscillation of the lift coefficient (one order of magnitude smaller). However,
even for the drag coefficient, the average value is well estimated, as suggested by the
figure 4.9.

4.4 Conclusions

We devised a method to build a non-linear observer for unsteady flows. This method is
based on the coupling of a non-linear low-dimensional model of the flow with a linear
technique that estimates the coefficients of the flow representation in terms of POD
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(a)

(b)

(c)

Figure 4.8: Isosurfaces of the velocity components u (left, grey = 0.5, dark grey = 1.0),
v (center, grey = -0.25, dark grey = 0.25) and w (right, grey = -0.075, dark grey =
0.075) of a snapshot outside the database: (a) actual snapshot, (b) snapshot projected
on the retained POD modes,(c) reconstructed snapshot using the K-LSE technique with
the sensor configuration (b).
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Figure 4.9: Reconstruction of Cl and Cd using KLSE results .vs. actual Cl and Cd and
their prjoections on the POD modes.

modes. The underlying idea is that the estimated flow should approximately satisfy
the POD model. The coupling leads to a nonlinear minimization problem solved by a
pseudo-spectral approach and a Newton method.

The non-linear observer was applied to the laminar flow around a confined square
cylinder at two different Reynolds numbers; for the first the flow is two-dimensional,
while in the second case complicated three-dimensional phenomena occur in the wake.

In the two-dimensional case, with a limited number of sensors, the proposed proce-
dure is able to give a significantly more accurate estimation of the POD coefficients and
of the whole velocity field than the LSQ, LSE and QSE approaches.

In the three-dimensional case, the flow dynamics are more complex, and not only
LSE and LSQ, but also the calibrated POD dynamical system provide poor coefficient
estimations when used outside the calibration interval. Conversely, the proposed proce-
dure, combined with either LSQ or LSE, gives satisfactory predictions of the coefficients
of those POD modes that are related to vortex shedding. For the remaining modes,
the accuracy is lower. Nevertheless, the instantaneous velocity fields are reconstructed
with an accuracy close to the best possible, which is the one that would be obtained by
projecting the DNS fields on the retained POD modes. The actual lift and drag coeffi-
cients, even if the amplitude of the oscillations of the drag coefficient are not perfectly
captured, are well reconstructed for the three-dimensional case.

Moreover, K-LSE and K-LSQ methods are weakly sensitive to sensor type and place-
ment. The results obtained with the proposed approaches are comparable to those ob-
tained by the SLSE approach, which also uses the temporal history of the flow measure-
ments, but in the Fourier space. This latter technique has a computational complexity
which is significantly larger than that of LSE or LSQ, and comparable to that of the
proposed approaches.
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From the present study, it appears that, probably, for flows characterized by complex
dynamics, the major limitation of all estimation techniques based on POD is indeed the
ability of the retained POD modes to adequately representing the flow field.

Thus, one way to improve the present results for the three-dimensional case is to
include statistical information concerning the errors both in the model and in the mea-
sured quantities, since the POD modes do not give an accurate representation of the flow
field. Including the parameter CR in the formulation is indeed a rudimental approach
that shows the influence of the relative weight given to the model or the measurements.

Another way is obviously to build a more accurate POD model. A possibility is to
take larger data bases to compute POD modes having better approximation properties.
However, this may not be pushed too far because of the huge amount of computational
resources required for managing large DNS datasets. Indeed, as shown in (Buffoni et al.,
2006), even with using a huge POD database, the increasing of the representativity of
the POD modes outside the database is not significant.

Another promising approach in this direction could be to modify the scalar product
used in the definition of the POD modes in such a way as to take into account the most
observable events in the flow.

The K-LSQ and K-LSE described here for non-controlled flows can be easily extended
to controlled flows. Thus, for control purposes, the estimation techniques could be
applied in a closed-loop controller, when the knowledge of the whole flow field is required.
Indeed, the K-LSQ and K-LSE, being weakly sensitive to sensors position, are good
candidates to be used with realistic sensors normally used in active control of flow past
bluff bodies as pressure sensors placed on the surface.

One of the main limitations of the method can be the robustness of the adopted
low-order model to the parameters variation. Indeed, the reduced model, if used within
an estimation procedure, has to be accurate for any parameters configuration. The issue
of building a robust low-order model will be examined in the next chapters.
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Chapter 5

Robust POD modeling of
actuated vortex wake

The study of this chapter is concentrated on the problem of deriving accurate and
robust low order models of actuated fluid flows. In the previous chapter the issue of the
asymptotic stability of the models was overcame by the two techniques of calibration,
the state and the dynamics calibration. We showed that it is possible to obtain accurate
low-order models even of complicated three-dimensional flows. The models obtained are
both accurate inside the interval of calibration and, even if not accurate, stable longer in
time. Here we extend the identification problem to cases where the flow is actuated by
devices that can affect locally or globally the velocity and pressure fields. The objective
is to derive a low-order model that provides accurate predictions and, most importantly,
that is robust to variations of the control law employed. Indeed, the aim is, by using low-
order models, to make possible to optimize controls for large-scale problems that would
not be otherwise solvable in terms of computational size. Indeed, the main drawback
is that the POD model is not able to represent the dynamics of a flow generated with
different control parameters.

The main idea is to identify the manifold over which the non-linear dynamics of the
POD modes lies, when the input to the system is varied. In this spirit, several dynamics
are included in the POD and calibration procedures are coupled with a Tikhonov type
regularization. The case of a precomputed control (open-loop) as well as the case of a
feed-back control (closed-loop) are studied.
Applications of this method is straight forward for models other than the Navier-Stokes
equations.

5.1 Flow setup and low order model

With reference to the geometry described in chapter §3, and skecthed again in fig-
ure 5.1(a) we consider a two-dimensional configuration, i.e. Lz/L = 0.6. Thus the
Reynolds numbers considered in this chapter are such that the flow can be considered
two-dimensional. As already asserted, the two three-dimensional instability, mode A
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5. ROBUST POD MODELING OF ACTUATED VORTEX WAKE
replacemen

(a) Flow configuration and isocontour of vorticity of a snapshot at Re =
150 (dashed lines represent negative values).

(b) Placement of synthetic
jet and sensors for control

Figure 5.1: Sketch of the flow configuration with control actuation.

and mode B, occur, for unconfined square cylinders, at Re ≃ 160 and Re = 190 − 200
respectively (chapter §3).

However large control inputs can promote three-dimensional behavior at lower Reynolds
numbers. This occurrence is neglected in the present framework.

In order to introduce a control device, aimed to stabilize the flow around the cylinder,
two jets are placed on the cylinder driven in opposite phase, as shown in figure 5.1(b).
Details concerning the geometry of the jets are in (Weller et al., 2009).

The presence of an actuator is modeled by imposing a new boundary condition on a
small surface Γc of ∂Ω, with width LΓc = 0.2L:

u(x, t) · n(x) = c(t), x ∈ Γc

Since the two actuators are driven in opposite phase:

v(x, t) = c(t), x ∈ Γc

Our interest in reduced-order models is that they can be useful for control purposes.
For example, using measurements of the vertical velocity at points xj in the cylinder
wake, and not an estimation of all the state flow, we can define a proportional control
law:

c(t) =

Ns∑

j=1

Kj(v(xj , t) − v0(xj))

where Ns denotes the number of sensors used and v0(xj) the vertical velocity of the
target flow field at points xj . We could then use the model to compute the set of feed-
back gains Kj that minimize the vortex shedding in the cylinder wake. In particular if
the target field is the steady unstable solution, as in (Li & Aubry, 2003; Weller et al.,
2009), and the sensors are placed in the center-line, being v0(xj) = 0, the proportional
control law becomes:

c(t) =

Ns∑

j=1

Kj(v(xj , t))

56



5.1. FLOW SETUP AND LOW ORDER MODEL

However the use of feedback control laws, rather than precomputed ones, can induce
extra errors in the models (see section §5.3.1). As a first step, we will therefore look at
examples in which the controls are trigonometrical series.

Given a numerical simulation of the Navier-Stokes equations performed over a time
interval [0, T ], and the velocity field saved at Nt time instants ti ∈ [0, T ], this yields
a data set {ui(x) = u(x, ti)}i=1..Nt . On this database we perform a POD procedure,
as described in section §2.1.1, using the snapshot method to compute the POD modes
{φr}r=1...Nr .
In the case of forced flow, the snapshots depend on the control law c(t) used. In this
chapter we consider POD bases derived from numerical simulations obtained using sev-
eral different control laws. There are many other parameters that could be varied, but
since here the aim is to study the effect of a control law, we set ourselves in the following
framework:

– Time instants, Reynolds number, domain geometry, placement of the actuators
will be the same for all the snapshots in the database.

– The control law c(t) will be varied

The data set used for the POD is therefore written:

{ui,ℓ(x) =}i=1..Nt,ℓ=1..Nc

where Nc denotes the number of control laws considered. If C = {c1, c2, · · · , cNc} is the
set of control laws used to obtain the database, the ensuing POD basis is denoted φ(C).
In the first part of this chapter, C is reduced to a single element which we denote c(t).

The choice of the control law used to obtain the database greatly influences the re-
sulting model, which is only locally accurate. Here, the idea is that if the model is used
within an optimization loop for control purposes, then an initial choice of control law
should be made by to start the optimization (in the next chapter a method to perform an
optimal initial sampling is described). A series of suboptimal controls are then generated
during the procedure, and the corresponding solutions can be added to the database.
With this in mind, the choice of proportional feedback control laws introduced in (5.3.2)
can be seen as corresponding to initial guesses of the optimal gain coefficients.

In the non-controlled case (see section §2.1.1), we lift the boundary conditions on
the velocity fields by defining a new set of snapshots:

w(x, t) = u(x, t) − ū(x)

where ū is some reference velocity field that satisfies the same boundary conditions as
the snapshots. In the present configuration, it can be the steady unstable solution, or a
time average of the snapshots.
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5. ROBUST POD MODELING OF ACTUATED VORTEX WAKE

When an extra boundary condition is imposed on the cylinder for control purposes, the
snapshots are chosen to be:

w(x, t) = u(x, t) − ū(x) − c(t)uc(x)

where uc(x) satisfies the following criteria:

uc(x) = 0 on Γ\Γc and uc(x) = 1 on Γc

This is obtained as proposed in (Galletti et al., 2006), i.e. considering the time-averaged
flow field (u′(x)) obtained by activating a jet with an intensity c(t) = c∗ = −0.05 and
defining uc(x) as:

uc(x) =
1

c∗
(
u′(x) − ū(x)

)
, (5.1)

The low-dimensional solution is now written:

ũ(x, t) = ū(x) + c(t)uc(x) +

Nr∑

k=1

ak(t)φ
k(x) (5.2)

The substitution of the low-dimensional solution with control actuation in the Navier-
Stokes equations and the Galerkin projection onto the first Nr POD modes, yields a
system of ordinary differential equations analogous to (2.6) with extra terms:





ȧr(t) = AG
r + CG

krak(t) +BG
ksrak(t)as(t) + Pr

+ EG
r ċ(t) + FG

r c
2(t) +GG

r c(t) +HG
krak(t)c(t)

ar(0) = a0
r

1 ≤ r ≤ Nr

(5.3)

where:

AG
r = −((ū · ∇)ū,φr) +

1

Re
(∆ū,φr)

BG
ksr = −((φk · ∇)φs,φr)

CG
kr = −((ū · ∇)φk,φr) − ((φk · ∇)ū,φr) +

1

Re
(∆φk,φr)

EG
r = (uc,φ

r)

GG
r = −((ū · ∇)uc,φ

r) − ((uc · ∇)ū,φr) +
1

Re
(∆uc,φ

r)

FG
r = ((uc · ∇)uc,φ

r)

HG
rk = ((uc · ∇)φk,φr) + ((φk · ∇)uc,φ

r)

Pr = (∇p,φr)
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We note that since the snapshots satisfy the continuity equation, the modes do also,
even with control actuation. This implies, for the reasons explained in section §2.1.2,
that Pr can be neglected.

Setting:

XG

r =
[
AG

r , {BG
ksr}k,s=1···Nr

, {CG
kr}k=1···Nr

, EG
r , F

G
r , G

G
r , {HG

kr}k=1···Nr

]t

and

f(a(t), c(t), ċ(t)) =
[
1, {ak(t)as(t)}k,s=1···Nr

, {ak(t)}k=1···Nr
,

ċ(t), c2(t), c(t), {ak(t)c(t)}k=1···Nr

]

the Nr first equations in (5.3) can be written in the compact form:

ȧr(t) = f(a(t), c(t), ċ(t)) ·XG
r

The initial value problem (5.3) is a reduced order model of the Navier-Stokes equations
for an actuated flow.

5.2 Robust low order models

Calibration method and partial calibration

The idea of calibration (section §2.1.2) is to keep the structure of the above model while
adjusting the coefficients of the system so its solution is closer to the desired one. In
order to build a model that fits a dynamics given by a particular control law c(t) we use
the dynamics calibration method. Indeed, with control actuation the number of modes
needed to represent the flow dynamics could be large. Thus, for the state calibration
method, although the resulting low-order models are accurate for actuated flows, as
shown in (Galletti et al., 2006), the computational costs are excessive.
The dynamics calibration method (§2.1.2) can be interpreted as approximating the error

er(t) = ˙̂ar(t) − f(â(t), c(t), ċ(t)) ·XG

r

by a quadratic function of all the non-discarded temporal coefficients, c(t) and ċ(t).
Other choices for the approximation of er lead to partial calibration problems.
For example, if we suppose er ≈ AE

r + CE
krak + GEc, i.e. if we chose to calibrate only

the constant terms and the terms linear in ar and c, then we will solve:

min
XC

1

Nr∑

r=1

∫ T

0

(
˙̂ar(t) − f1(t) ·XC

r,1 − f2(t) ·XG

r,2

)2
dt (5.4)

where

XC

r,1 =
[
AC

r , {CC
kr}k=1···Nr

, GC
r

]t

XG

r,2 =
[
{BG

ksr}k,s=1···Nr
, EG

r , F
G
r , {HG

kr}k=1···Nr

]t
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and

f1(t) =
[
1, {ak(t)}k=1···Nr

, c(t)
]

f2(t) =
[
{ak(t)as(t)}k,s=1···Nr

, ċ(t), c2(t), {ak(t)c(t)}k=1···Nr

]

Of course, other choices of the terms to be calibrated can be made. For a general
formulation we denote Ncal the number of terms of vector Xr that are calibrated, and
we have Ncal 6 N2

r + 2 × Nr + 4. Chosen the terms to be calibrated, this approach
involves solving Nr linear symmetric systems of size N2

cal:

∫ T

0
f t

1(t)f1(t) dt XC

r,1 =

∫ T

0
f t

1(t)
(

˙̂ar(t) − f2(t) ·XG

r,2

)
dt (5.5)

At this point two choices need to be made: the number of modes we want to keep in
the model, and which system coefficients to calibrate.
The control law affects or may affect all the coefficients of the POD representation
of the solution. However there are a number of modes that we need not consider in
the expansion since they are energetically not very significant and therefore have little
effect on solution accuracy. This of course does not mean that they are dynamically
irrelevant because they can trigger or sustain an instability. Indeed that is one of the
reasons why a model obtained by Galerkin projection without calibration has a very poor
dynamical performance. In our experience, the larger Nr, the better the conditioning
of the calibration problem and the dynamical evolution of the model. Therefore Nr

is limited only by the size of the resulting calibration problem. For controlled flows,
for Reynolds numbers in a range of 60 − 150, choosing Nr to be in the 40 − 60 range
represents a good compromise between accuracy and computational time.
Concerning calibration, again we choose not to calibrate the N3

r terms Bksr.
Once the model has been calibrated to fit a particular control law c(t), it can of

course be integrated using another control law. Denoting the input control law ci(t), the
calibrated model is written:

R({c})





ȧr(t) = f(a(t), ci(t), ċi(t)) ·Xr

ar(0) = a0
r

1 ≤ r ≤ Nr

(5.6)

where by denoting R({c}) the model we put in evidence that it was calibrated using the
control c(t).

Well-posedness and robustness

We suppose that the control is obtained using a proportional feedback law (section §4.1):

c(t) =

Ns∑

j=1

Kjv(xj , t)
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We consider the new calibration problem:

min
X

Nr∑

r=1

∫ T

0

(
˙̂ar(t) − f(â(t), ĉ(t), ˙̂c(t)) ·Xr

)2
dt (5.7)

where ĉ is the control law reconstructed by using the low-dimensional velocity and it is
defined by:

ĉ(t) =

Ns∑

j=1

Kj ṽ(xj , t) =

Ns∑

j=1

Kj

(
v̄(xj) + ĉ(t)vc(xj) +

Nr∑

r=1

âr(t)φ
r
v(xj)

)
(5.8)

This last approach makes the reduced order model a feedback model, which is useful if
we want to use the model to determine an optimal feedback law. The problem is however
under-determined.
We reformulate (5.8) to clearly show the dependency of ĉ on â:

ĉ(t) = κ0 +

Nr∑

r=1

κrâr(t) (5.9)

where

κ0 =

Ns∑

j=1

Kj

1 −∑Ns

i=1 Kivc(xi)
v̄(xj) and κr =

Ns∑

j=1

Kj

1 −∑Ns

i=1 Kivc(xi)
φr

v(xj)

We now look at the partial-calibration problem described above. The function f1 that
appears in system (5.5) can be reformulated:

f1(t) =

[
1, {âk(t)}k=1···Nr

, κ0 +

Nr∑

ℓ=1

κℓâℓ(t)

]

System (5.5) is therefore rank deficient. Indeed, the equations obtained vanishing the
derivatives with respect to the terms Ckr are a linear combination of those obtained by
vanishing the derivatives with respect to the terms Gr. The problem remains if more of
the system coefficients are calibrated, and according to the choice made the rank of the
problem matrix can even diminish with respect to Ncal.
This difficulty can however be solved by using one of the two methods proposed in
the following (Tikhonov regularization, multiple calibration). Finally, the proportional
feedback reduced order model is written:

Rf({ĉ})





ȧr(t) = f(a(t), cf(t), ċf(t)) ·Xr

cf(t) =

Ns∑

j=1

Kj

(
v̄(xj) + cf(t)vc(xj) +

Nr∑

r=1

ar(t)φ
r
v(xj)

)

ar(0) = a0
r , cf(0) = ĉ(0)

1 ≤ r ≤ Nr

(5.10)
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The system solved for calibration can be ill-posed even in cases different to the one just
described. To understand why this is, it is sufficient to go back to the state calibration

method. Solving the minimization problem

min
a,X

Nr∑

r=1

∫ T

0
(ar(t) − âr(t))

2 dt

subject to ȧr(t) = f(a(t), c(t), ċ(t)) ·Xr

(5.11)

involves solving a non-linear system for which the uniqueness of solution is not guar-
anteed. The state calibration functional can therefore have several local optima, and
thus there are several possible choices for X that will lead to a low value of the error
‖â− a‖. Since these choices should also be good choices for the minimization problem

(5.4), the matrix
∫ T

0 f
t
1f1 dt in (5.5) is in general almost singular. A model obtained by

inverting this matrix is most often very unstable. To overcome this problem we propose
a Tikhonov type regularization method which we describe hereafter.

Tikhonov regularization

In order to overcome the ill-posedness of the calibration problem (5.5), it seems reason-
able to solve the following regularized problem, instead of (5.4):

min
XC

1

Nr∑

r=1

∫ T

0

(
˙̂ar(t) − f1(â(t)) ·XC

r,1 − f2(â(t)) ·XG

r,2

)2
dt

+α
∑Nr

r=1 ‖XC

r,1 −XG

r,1‖2

(5.12)

where α is the Tikhonov regularization parameter.
The parameter α can be chosen by a classical technique. We start by plotting, for a

set of values of α in [10−6, 10−2], the error
∑

r ‖ȧr − ˙̂ar‖
2

versus the coefficient variation

‖XC

1 −XG

1 ‖2. This leads to a classical Tikhonov L-shaped curve, the corner point of
which is optimal in the sense that it is a good compromise between the error on the
dynamics and the distance from the original coefficients (Hansen, 1997). The value of α
corresponding to this point can be chosen to perform the calibration procedure.

However, while a calibrated reduced order model R({c}) works well when integrated
with ci(t) = c(t), its behavior when integrated with a different control law is unpre-
dictable. As such, the reduced order model can with difficultly be used for estimation
and optimization purposes.
In the literature several methods are proposed for adapting reduced order modeling for
control purposes, some successful examples can be found in (Hinze & Volkwein, 2005;
Ravindran, 2007; Bergmann & Cordier, 2008). However for those cases, no calibration
seems necessary for the models to work, but this is not the case for general control prob-
lems as shown in the following.
The originality of the model we propose hereafter, is the combination of multi control
data sets with the calibration procedure. Such a model is fast to build and yet remains
accurate for different control inputs.
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Calibrating over more than one control law

We consider a data set that includes simulations obtained using different control laws.
Letting:

âℓ
r(t) =

(
uℓ(t),φr

)

the calibration problem becomes:

min
X

Nr∑

r=1

Nc∑

ℓ=1

∫ T

0

(
˙̂aℓ
r(t) − f(âℓ(t), cℓ(t), ċℓ(t)) ·Xr

)2
dt (5.13)

We remark that although the size of the snapshot database is proportional to the number
of controls considered, the size of the calibration problem remains constant. Further-
more, if Nc > 1, the rank deficiency previously discussed for proportional feedback no
longer occurs.
The main idea is that as the number of controls Nc is increased, although the model can
become a little less precise for the reference control, it is much more accurate for other
control laws. In the next section we show some successful examples of this method at
different Reynolds number, and for different kinds of control laws.
We refer to a model built using Nc control laws as an Nc-control model. Such a model
is denoted RC where C = {c1, · · · , cNc}.

5.3 Results and discussion

The described technique was applied in order to build a low order model of the actu-
ated flow around the confined square cylinder in various configurations. We tested the
prediction capabilities of the model for two different Reynolds number, Re = 60 and
Re = 150, with precomputed and feedback control laws. In particular we built different
models with one and more control laws and we analyzed their predictions with different
controls.
In all the examples presented in the following, actuation is started only once the flow
is fully developed. With the control turned on the simulation is performed for about
seven vortex shedding cycles, and Nt ≈ 200 snapshots are saved. T ≃ 50 is the non-
dimensional duration of the time interval. The number of POD modes retained for the
reduced order model is Nr = 40 for the case Re = 60 and Nr = 60 for the case Re = 150.
We measure the accuracy of the model R(C) in the following way:

– Time coefficients dynamics:
For a given value of r, plot ar(t), solution of R(C) with input ci(t), against âr(t),
projection of the full order solution onto the POD basis φ(C). In the examples
r = 3 is usually chosen because it was the mode for which the differences between
models were the most remarkable.

– Computation of the integration error:

E(C, ci) = ‖a− â‖/‖â‖
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5. ROBUST POD MODELING OF ACTUATED VORTEX WAKE

where ‖a‖2 =

∫ T

0

∑

r

a2
r(t) dt

In the examples with feedback laws we use only one sensor placed in the cylinder wake.
Choosing the center of the cylinder as the origin of a coordinate system, we denote
xs = (xs, ys) the position of the sensor. The integration error Ef(C,Ki) is measured in
the same way as for the non-feedback case.
Our first goal is that the model should be able to reproduce the DNS data to which was
fitted, we therefore expect E(C, ci) to be small if ci ∈ C. Our second goal is that the
model must be robust to parameter variation. As the difference between ci(t) and the
controls in C increases, the error E(C, ci) grows. We seek a model for which this growth
rate is as low as possible.

5.3.1 Divergence of a classical Reduced Order Model

A simulation at Re = 60 was performed using feedback control with a sensor placed
at (xs, ys) = (0.7, 0.0) and K = 1. We denote c(t) the time history of the control law
obtained by the simulation.
We compare the results obtained with the POD Galerkin model (5.3) and with the
calibrated model R({c}) (see system (5.6) for model formulation). The model integration
error E({c}, c) is equal to 23% for the non-calibrated model, and to 0.136% for the
calibrated model.
For a feedback model, the difference is even more important. We integrated the feedback
system (5.10) with K = 1, once with X obtained by Galerkin projection, and once with
X calibrated as described in 5.2. We obtained an integration error Ef({ĉ}, 1) of 117% in
the first case, against an error of 4% in the other. An example of the errors, in terms of
time dynamics, that the non-calibrated model can produce are shown in figure 5.2. In
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Figure 5.2: Projection of the DNS simulations onto POD modes vs. integration of the
dynamical system (5.10) with X = XG

figure 5.3 we plot the control law cf(t) computed when integrating the feedback model,
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and on the same figure, the original control law c(t). Results for the non-calibrated case
are plotted on the right: the distance between cf(t) and c(t) increases with time, meaning
that at each time step, new errors are added to the model. Calibration is therefore all
the more essential when considering feedback control.
In order to calibrate, regularization is needed to get well-conditioned inverse problems as
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Figure 5.3: c1 (continuous line) versus cf, when the model is calibrated (left) and when
it is not (right)

mentioned before and shown in the following. However, the choice of the regularization
parameter α is not an easy one.
For example, we performed a simulation at Re = 150 using a feedback control with a
sensor placed at (xs, ys) = (0.7, 0.0) and K = 0.8. The calibration described in 5.2 was
performed with α ≈ 0. This led to an ill-conditioned system to be solved and to a model
which was not very accurate, and not robust at all to parameter variations. The effect
of α on model results is shown in figure 5.4. The two top figures show the third modal
coefficient obtained by projection and by integrating the model with K = 0.8. On the
left, we plot the results obtained when the model was built with α = 1.6 ∗ 10−6: at
the end of the time period the model diverges from the DNS results. With a higher
value, α = 10−3, this problem no longer occurs, as shown on the right. The same test
was then performed with a different value of K in order to see the model capability of
predicting a dynamics to which it was not fitted. The results are shown in the same
figure: divergence was immediate for a low value of α, whereas for a higher value, the
model, although not accurate, was at least stable. It appears that, when using an higher
regularization parameter, the calibration system is well conditioned, the model more
accurate and more stable when integrated with a different control law to those used for
calibration. In the following the parameter α is determined using the L-method with
the restriction that any values of α below a certain threshold are excluded.
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Figure 5.4: a3 DNS (continuous line) with K = 0.8 (top) and K = 1.3 (bottom) versus
a3 obtained when the model is calibrated with α = 1.6 ∗ 10−6 (left) and when α = 10−3

(right)

5.3.2 Testing model robustness: Re = 60 and Re = 150

In this section we present the improvements brought to model robustness by introducing
calibration over several control laws. For both Reynolds numbers, Re = 60 and Re =
150, the same experiment was performed:

Step 1 : Build 1- , 2- and 3-control models

We started by choosing three control laws which we denote c1(t), c2(t) and c3(t). For each
control we performed a simulation of the Navier-Stokes equations, saving 200 snapshots
for each simulation. We then defined seven control sets:

Three 1-control sets: C1 = {c1}, C2 = {c2}, C3 = {c3}

Three 2-control sets: C4 = {c1, c2}, C5 = {c1, c3}, C6 = {c2, c3}
One 3-control set: C7 = {c1, c2, c3}
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For each control set Ci, we computed a POD basis φ(Ci) and a calibrated reduced order
model R(Ci) by solving problem (5.13).
In the following we refer to c1(t), c2(t) and c3(t) as the model control laws.

Step 2 : Run the model with different control laws

We next chose several other control laws which we denote ctestj (t). Each of these test

control laws was used as input for the Navier-Stokes equations, and for the seven reduced
order models R(Ci) described above. The snapshots from the Navier-Stokes simulations
were projected onto the seven POD bases φ(Ci). This procedure made it possible to
compute the model integration errors Ej

i = E(Ci, ctestj ), and compare the efficiency of
each model.
For measuring model robustness, it is useful to have some idea of how much the dynamics
we are trying to predict, differ from those included in the model. We therefore need to
find a way, for each model, to measure the distance between the Nt ×Nc snapshots that
were used to build it, and the Nt snapshots obtained using a test control law. To do this
we proceed in the following way : if the control set Ci is composed of Nc control laws,
then the distance between the simulations associated to Ci, and the one obtained using
ctestj (t), is defined as:

∆j
i =

1

Nc

Nc∑

l=1

(
‖âl − âj‖/‖âl‖

)

where the terms ân (n = j or n = 1 · · · l) result from projecting the snapshots onto the
POD basis φ(Ci).
The results are plotted in figure 5.7 and figure 5.11 at Re = 60 and Re = 150 respec-
tively. For each value of model i, the model integration error Ej

i is plotted versus the

distance ∆j
i . We note that the three controls used to build the models were in fact

included in the test set, which explains why there are 3 points at ∆j
i = 0.

Results for Re = 60

In figure 5.5 we plot the control laws used to build the models. The three control laws
are linear combination of trigonometrical functions. For each control law we plot the
third modal coefficient â3(t) to give an idea of the dynamics induced. The figure also
shows the prediction for this coefficient given by the 3-control model R(C7). The model
results are accurate: the reduced order model was successfully calibrated to fit several
dynamics.

Eleven extra control laws were used for testing. A few examples are plotted in
figure 5.6. For these examples we also plot the third modal coefficient obtained by
projection and by model integration. Some discrepancies in coefficient amplitude are
observed, but overall the model predicts the right time dynamics.
In figure 5.7 we look at the results obtained with the different models, using the distances
and errors described above. The first point to be made is that the model error is almost
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Figure 5.5: Control laws used to build the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 60

zero when the distance from the model is zero. This confirms that 1-control models work
well when integrated with the control law to which they were fitted. The errors then
increase with the distance from the model, as was expected.
The graph highlights the disadvantage of 1-control models. In the best case the difference
between projection and prediction coefficients becomes higher than 20% as soon as the
distance from the model exceeds 40%. In contrast, for the 2-control and 3-control models,
the error stays under 20%, even when the distance increases. In figure 5.8 we plot
isolines of the vorticity at time t = T for one of the test control laws (the third control
law in figure 5.6). Time coefficients were obtained by solving R(C) with C = {c1, c2}.
The velocity field was then reconstructed using the first ten of these coefficients and the
first ten POD modes in φ(C). The reconstructed vorticity is presented along with the
vorticity obtained by running the Navier-Stokes equations with the test control law. The
controls used to build the model caused a slight decrease in vortex size (see figure 5.5,
bottom left) whereas actuation used in the test caused a slight increase in vortex size (see
figure 5.6, bottom right) . We note that the model was able to predict such features,
and that at the end of the simulation time, the structure of reconstructed flow is almost
identical to that of the real flow. In contrast, the 1-controls were not able to identify this.
If the same reconstruction is performed using C = {c1} for example, the flow appears
almost stable at t = T , meaning the model predicted the opposite behavior to what
actually happened.
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Figure 5.6: Control laws and time coefficients used for testing the 3-control model -
Re = 60
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Figure 5.8: Model predicted vorticity field (top) and Navier-Stokes vorticity field at
t = T . Positive (continuous lines) and negative (dashed lines) vorticity isolines

Results for Re = 150

ForRe = 150 only feedback control laws are used both to build the models and to perform
the tests. In figure 5.9 the three feedback control laws used to calibrate the model are
shown. The laws are obtained with one sensor placed at (xs, ys) = (0.7, 0.0) and by using
gains K = 0.6, K = 0.8 and K = 1. The figure also shows the third modal coefficients
given by integrating the 3-control feedback model with each gain. Although the control
laws induce different dynamics, the model is able to give an accurate prediction in all
three cases. Six extra control laws were used for testing, each corresponding to a
different choice of K. A few examples, with corresponding coefficients â3(t) are plotted
in figure 5.10. It appears that the dynamics are quite different when the distance,
between the gain value and gains included in the model, is large. For example, when
using a gain K = 0.1 the average value of â3(t) is low compared to that obtained with
K = 1. However, the 3-control model again gives an overall good prediction of the time
dynamics. Figure 5.11 is built in the same way as figure 5.7. In particular the graph
shows the disadvantage of using a 1-control model, with prediction errors of over 34%
when the distance from the calibration dynamics increases over the 30%. As in the
case Re = 60, the 2-control models give more accurate predictions than the 1-control
models. The lowest errors are obtained with the 2-control model (K = 0.6,K = 1). This
observation suggests that, in model construction, an optimized a priori choice of the
sampling points could be useful to obtain a more robust model. We note that in this
case it was the model built to fit the highest and lowest values of K that gave the best
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Figure 5.9: Control laws used to build the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 150

result, and that adding a third intermediate control to the model (K = 0.8) did not bring
any improvement: the 3-control model gives more or less the same results.
In figure 5.12 we plot isolines of the vorticity at time t = T for the flow obtained using
K = 0.1 as feedback gain (the first one in figure 5.10). Time coefficients were obtained
by integrating the 3-control model. The velocity field was then reconstructed using all
the 60 coefficients and POD modes. The reconstructed vorticity is presented along with
the vorticity obtained by running the Navier-Stokes equations with the test control law.
The controls used to build the model were similar in the sense that they had a much
stronger effect on the flow compared to the control obtained with K = 0.1. We note that
the model is able to accurately predict a flow snapshot and that the reconstructed flow
is almost identical to that of the real flow.

Convergence of low-order models

In the above examples we considered the effect of calibration on model dynamics, and
the errors in the resulting approximations. Here we investigate the convergence of the
calibrated system coefficients as new datasets are added to the POD-database.
A convergence in modelling errors appears in figure 5.7 and figure 5.11. The 2-control
models represent an improvement on the 1-control models. On the other hand the 3-
control model has comparable performances with respect to the 2-control models. This

71



5. ROBUST POD MODELING OF ACTUATED VORTEX WAKE

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

c(t)

Non−dimensional time

 

 

k =0.1

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

c(t)

Non−dimensional time

 

 

k =0.4

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

c(t)

Non−dimensional time

 

 

k =1.3

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

a
3

Non−dimensional time

 

 

DNS Model

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

a
3

Non−dimensional time

 

 

DNS Model

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

a
3

Non−dimensional time

 

 

DNS Model

Figure 5.10: Control laws used to test the models (top); a3 DNS (continuous line) vs
prediction by 3-control model (symbols) - Re = 150
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Figure 5.11: Prediction errors obtained using 1-control, 2-control and 3-control models
at Re = 150
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Figure 5.12: Model predicted vorticity field (top) and Navier-Stokes vorticity field at
t = T obtained with K = 0.1. Positive (continuous lines) and negative (dashed lines)
vorticity isolines - Re = 150

is true for both control strategies and Reynolds numbers.
If error reduction with the increase of information included in the problem can be ex-
pected, convergence of the system coefficients is not obvious, since each time the database
increases, the calibration problem itself changes. In figure 5.13 we show some results in
this direction.
We used the models obtained previously for Re = 150 and an extra model based on a
4-control dataset. The presence of coefficients Er, Fr in the reduced-order model (5.3)
are due to the control law being non-zero, so we show the convergence of their first ten
components as the number of data sets increases.

For Er convergence is clear, the 2-,3- and 4-control models lead to almost identical
results. The same phenomena was observed for the other system coefficients, with the
exception of the Fr for which the convergence rate is lower. This is related to the fact
that the Fr are the coefficients of the term c2(t) in the reduced order model, and are
therefore more sensitive to changes in the control law and to the effects of the calibration
procedure. However, even for these coefficients, we note that their variation between the
2-, 3- and 4-control models is monotonically decreasing.

Final remarks

It is reasonable to ask how the above results would extend to other more complex flows
such as three-dimensional wakes at high Reynolds numbers.
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Figure 5.13: Values of system coefficients Er and Fr for r = 1 · · · 10 - Re = 150

We showed that at least two separate issues are involved in low-order modeling for
control. One issue is the actual possibility of giving a low-dimensional representation
of a flow: the task of modeling with a small number of degrees of freedom distributed
systems relies on the ansatz that the dynamics is largely affected by the most energetic
scales. Of course there exist flows where these conditions are marginally satisfied. When
the flow is not characterized by large scale coherent structures as for high Reynolds
number turbulence, then low-dimensional representation does not exist, as for example
shown in (Telib et al., 2004). However, it is well known that even at high Reynolds
numbers the wake past bluff bodies is characterized by three-dimensional large-scale
structures that can be described by a low-dimensional representation. Other flows have
been shown to be amenable to a small dimensional representation when they develop
large scale dynamical features such as for example shear flows (Wei & Rowley, 2006;
Noack et al., 2005) and cavity flows (Rowley & Williams, 2006).

Finally, the model must be robust to parameter variations, i.e., it should be pre-
dictive. For example, in the type of flow that we consider the solution can be strongly
affected by the controls: the steady unstable solution of the Navier-Stokes equations
corresponding to this configuration is significantly different from the mean flow. By cali-
brating the model over several control laws we take into account this variation. However
we implicitly assume that in the neighborhood of the controls included in the database,
the response of the system to the control is regular enough to attain local convergence
of the parameters that we identify. Therefore highly irregular system responses are not
likely to be captured by this method. Nevertheless, the present flow configuration is
challenging. The actuators that we study in this chapter are difficult to be modeled as
their effect is localized. In fact, low-order models of actuated flows found in the litera-
ture are very often relative to distributed volume forces which affect the flow on large
scales (Tadmor et al., 2004; Ahuja & Rowley, 2008).
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5.4 Conclusions

The overall picture of controlled reduced-order modeling that results from the study of
this chapter is the following. Given a control law, one can deduce a low-order model
of the actuated flow by simply projecting the Navier-Stokes equations on POD modes.
The coefficients of the quadratic model thus obtained are found by projection. However,
a model constructed this way will show large time-integration errors even for the same
control law used to generate the POD modes. Calibration can take care of that, in
the sense that the model coefficients can be determined in order to match as closely as
possible at least the solution from which the POD modes are obtained. This might lead
to a numerically stable model. However, this model is generally not at all robust, in the
sense that the predictions for a slightly different configuration from that it was generated
from, fails. A symptom of such lack of robustness is observed in the ill-posedness of the
inverse problem: the matrices to be inverted are almost singular.
In order to get around this deficiency, we regularize the solution by adding a constraint
to the minimization method used to solve the inverse problem. We ask the coefficients
of the polynomial expansion to be close enough to those obtained by projection. This
method allows to synthesize models that adequately simulate the flow in a small vicin-
ity of the control law used to generate the solution database. However, the actual real
improvement in robustness is obtained by spanning the solution manifold, i.e., by in-
cluding several control laws in the inverse problem definition. By doing this, the results
presented show that the models are able to predict dynamical behaviors that are far,
in terms of an energy norm, from the cases included in the database. A consequence
of such an additional regularization is that the matrices involved in the inverse problem
solution become well conditioned.

Another important aspect of the method proposed, is that its cost is that of a matrix
inversion, and that it does not scale with the number or the size of data sets used to
build the model. Therefore it seems reasonable to envisage an automatic strategy to
enrich the model by spanning the control space. In this respect, the technique proposed
in (Bui-Thanh et al., 2008) to distribute in an optimal way the points where to test
the control space, even if very demanding in terms of computational costs, can help to
minimize the number of a priori simulations needed to build the model. For example,
our results show that a model based on two controls might predict the effect of actuation
laws not present in the data base, as precisely as a model based on three controls, if the
two controls are appropriately placed. For this reason, in the next chapter we describe
an alternative technique to perform an optimal placement of the sampling points in the
data space with parameters variation.
In conclusion, the modeling we propose appears to be a viable approach to determine
control strategies for those problems that, because of their computational size, cannot
be treated in the framework of classical control theory. An application of this approach
can be found in (Weller et al., 2009) where a control optimization procedure is carried
out for the same flow configuration considered in this chapter.
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Chapter 6

A Residual based strategy to
sample POD database

In the previous chapter we developed a technique to calibrate a low order model over
several dynamics, with the aim to make it robust to parameters variations. The analysis
of the results showed that an optimized choice of the sampling points on the space
of the parameters could be useful. Indeed, we noticed that a model built by using
two dynamics with two different control laws accurately reproduces dynamics that not
belong the database as well as a 3-control model. Thus, the main drawback is that a
POD basis built on a generic subspace is not optimal to represent a flow generated
with different system parameters with respect to those used to build the basis. To get
rid of this problem, different strategies can be employed. The first one is to update the
POD basis during the optimization, for instance by using trust region method (TRPOD
see Bergmann & Cordier (2008)). Another method is to build a robust POD basis that
can be used all along the optimization process. This kind of POD basis can be generated
using chirp excitation Bergmann et al. (2005) or using an appropriate sampling of the
input parameter space.

In this spirit, this chapter is devoted to the identification of an efficient sampling of
the input subspace. This method, coupled with the techniques described in the previous
chapter, allows the construction of a robust model that can be used for control without
updating (or with less updating possible) of the POD basis.

Normally, two classes of sampling methods are commonly used: the one shot method
and the iterative one. In the one shot method the sampling is obtained by partitioning
the range of variation of the input parameter space. The partition can be found using
different strategies as, for instance, the uniform distribution, the orthogonal sampling,
the Sobol algorithm etc... An alternative strategy to the classical partition strategies is
the Centroidal Voronoi Tessellations (CVT, see Du et al. (1999); Burkardt et al. (2004,
2007)) which leads to an efficient partition. This kind of tessellations can be efficiently
computed using the Lloyd algorithm Du et al. (2007). The main drawback of the one
shot strategies is that the number of sampling points has to be chosen a priori. Moreover,
a preliminary analysis of the density function used to compute the centroidal tessellation
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is necessary to determine the proper refinement when sampling the range of variation of
the input parameter. The other class of methods consist to add sampling points in an
iterative way. Thus, we can choose the degree of accuracy by fixing a stopping criterion.
One efficient iterative method is based on Greedy sampling (see Bui-Thanh et al. (2008)
and Grepl & Patera (2005)). In Greedy sampling, the new value of the input parameter
to be sampled is chosen on the maximum of the density function, i.e. where the error or
the residual given by the POD basis is larger. In this chapter we propose a new approach
that couples Constrained CVT and Greedy methods.

In this chapter the two dimensional geometry is considered. Thus, with reference
to figure 3.1, Lz/L = 0.6. The flow configuration and the flow behaviour are already
analized in the previous chapters, for this reason we take no notice of it here. For
simplicity we consider the Reynolds number as input parameter, but the whole procedure
can be easily extended to the control parameters. Thus, the Reynolds number will be
varied, while the other parameters will be the same. In particular the control actuation
is not taken into account.

6.1 Reynolds dependent pressure extended reduced order
model

6.1.1 Reynolds adaptive pressure extended reduced order model

In the previous chapters, as in many practical applications for incompressible flows, we
computed the reduced order basis from the velocity fields.

Here, following the idea in Bergmann & Cordier (2008) the pressure term can be
easily computed using p = p̃ (see decomposition (6.1b)). An important key issue is that,
knowing the pressure field, it is possible to evaluate the Navier-Stokes residuals that
can be considered as an error estimator. This estimator can then be used to perform a
robustness improvement procedure as described in section §6.2.2. Thus, we use a global
basis for both the velocity and pressure fields (see Bergmann & Cordier (2008)). The
exact flow fields u and p are then approximated by:

ũ(x, t) =

Nr∑

i=1

ai(t)φi(x) (6.1a)

p̃(x, t) =

Nr∑

i=1

ai(t)ψi(x). (6.1b)

The velocity and the pressure basis functions, φi and ψi respectively, are determined
by a POD procedure carried out using global snapshots U(x, t) = (u(x, t), p(x, t))T ,
with no subtraction of the average field. Then the basis functions φi and ψi are defined
as Φ(x, t) = (φ(x, t), ψ(x, t))T , Φ(x, t) being obtained by snapshot method.
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The substitution of equations (6.1) in the Navier-Stokes momentum equations and
a Galerkin projection lead to the new Reduced Order Model:

Nr∑

j=1

Lij
daj

dt
=

Nr∑

j=1

Cijaj +

Nr∑

j=1

Nr∑

k=1

Bijkajak, (6.2)

with initial conditions

ai(0) = (U(x, 0), Φi(x))Ω i = 1, · · · , Nr, (6.3)

where the coefficientsLij , Bij and Cijk are given by:

Lij = + (φi, φj)Ω , (6.4a)

Cij = −
(
φi,

1

Re
∆φj − ∇ψj

)

Ω

, (6.4b)

Bijk = − (φi, (φj · ∇)φk)Ω . (6.4c)

Note that in a general way, we have (Φi, Φj)Ω = δij , but not (φi, φj)Ω = δij ; thus,
Lij 6= δij . Any reference field is subtracted to the snapshots, then the constant terms
Ai do not appear in the low order model. However, the first POD mode corresponds to
the average field of the snapshots. In order to build a Reynolds adaptive Reduced Order
Model we extract the viscous terms in the model from Cij ; this leads to the final model,
which has the classical form with extra terms:

Nr∑

j=1

Lij
daj

dt
=

Nr∑

j=1

CRe
ij aj +

Nr∑

j=1

Cp
ijaj +

Nr∑

j=1

Nr∑

k=1

Bijkajak, (6.5)

where :

CRe
ij = −

(
φi,

1

Re
∆φj

)

Ω

, (6.6a)

Cp
ij = + (φi, ∇ψj)Ω . (6.6b)

Every dynamics associated with a Reynolds number belonging to a predefined interval
can be approximated with more or less efficiency using model (6.5). For simplicity
reasons, we considered only the Reynolds number as the system input parameter, but
all the concepts introduced here for the Reynolds number can be easily extended to other
system parameters, as for instance for high dimensional control space as in the previous
chapter.

6.1.2 Calibration procedure

In order to build a robust order model we applied the dynamics calibration technique
described in §2.1.2 and resumed in this section for a Reynolds dependent reduced order
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model. Setting:

XG

i =
[
{L−1

ij }j=1···Nr · {CRe
ij }j=1···Nr , {L−1

ij }j=1···Nr · {Cp
ij}j=1···Nr ,

{L−1
ij }j=1···Nr · {Bijk}j,k=1···Nr

]T

and

f(a(t), Re) =

[
{aj(t)}j=1···Nr

, {aj(t)ak(t)}j,k=1···Nr
,

1

Re

]

the equation in (6.5) can be written in the compact form:

ȧi(t) = f(a(t), Re) ·XG

i

We consider a data base that includes a simulation obtained with Reynolds number
Re = R̂e to calculate the POD basis.The partial dynamics calibration procedure writes

min
XC

1

Nr∑

i=1

∫ T

0

(
˙̂ai(t) − f1(t) ·XC

i,1 − f2(t) ·XG

i,2

)2
dt+ α

Nr∑

i=1

‖XC

i,1 −XG

i,1‖2 (6.7)

where

XC

i,1 =
[
CC

i

Re
]

XG

i,1 =
[
CC

i

Re
]

XG

i,2 =
[
CG

i

p
, {BG

ki}i=1···Nr

]t

and

f1(t) =
[

1
R̂e

{ak(t)}k=1···Nr

]

f2(t) =
[
{ak(t)}k=1···Nr

, {ak(t)as(t)}k,s=1···Nr

]

and

âi(t) = 〈u(·, t),Φi〉

and where α is the Tikhonov regularization parameter and it is chosen by the L-shaped
curve method described in §5.2. In this calibration procedure only the terms of CRe

ij

are calibrated. This is due to the assumption that the errors in the Galerkin model are
due mainly to the fact that it neglects the small scales and therefore a large part of
the viscous effects. CRe

ij indeed results from the projection of the viscous term of the
Navier-Stokes equations.
The multiple calibration can be performed on the POD basis calculated over N dynamics
obtained with different Reynolds numbers Re1, . . . , ReN . The new stable model is then
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calculated to fit the dynamics at various Reynolds numbers. Thus, the system (6.7) to
solve becomes:

min
XC

1

Nr∑

i=1

N∑

ℓ=1

∫ T

0

(
˙̂aℓ
i(t) − f ℓ

1(t) ·XC

i,1 − f ℓ
2(t) ·XG

i,2

)2
dt+ α

Nr∑

i=1

‖XC

i,1 −XG

i,1‖2 (6.8)

where

âℓ
i(t) = 〈uℓ(·, t),Φi〉

with uℓ(·, t) the snapshots at the instant t calculated with Re = Reℓ.

6.2 Improvement of the model robustness

The aim of this section is to improve, by adding snapshots to the starting database in
an optimal manner, the representation capabilities of a POD basis of a given flow when
the Reynolds number (input parameter of the system) varies in a given range, so as to
provide a single reduced order model that is efficient and robust for the considered range.
As already stated, all the concepts introduced in this study can be easily extended to
other system parameters, as, for instance, to a set (even large) of control parameters.

The Reynolds number space (here, only a discrete interval) under consideration is
denoted I = [ReL, ReR], where we chose ReR = 180 and ReL = 40 or ReL = 70,
depending on the considered case. Reynolds numbers ReL = 70 and ReR = 180 corre-
spond to the lower and higher bound for the 2D periodic regime for the considered flow
(see §3) around the confined square cylinder. The case with ReL = 40 is considered to
investigate if the reduced order model is robust enough to predict a (Hopf) bifurcation
of the system (that occurs at Rec ≈ 60 in this case). Numerically, I is discretized with
∆Re = 5, and it is denoted as Ih.

In order to improve the POD basis, we want to enrich the database in an one-shot
way by adding some sets of snapshots at different Reynolds numbers Renew

i ∈ I. Let
U [Re1,...,ReN ] be the database composed by N sets of snapshots taken independently
at Re1, . . . , ReN , where N is a free parameter depending on the desired accuracy of
the POD basis. The projection of the global numerical solution of the Navier-Stokes
equations U(x, t) onto the Nr retained POD modes is:

Û [Nr](x, t) =

Nr∑

n=1

ân(t)Φn(x) (6.9)

In the following, we will always use Nr = 31. The number of basis functions is arbitrarily
chosen quite large because it will be kept all along this study, even when they are

81



6. A RESIDUAL BASED STRATEGY TO SAMPLE POD DATABASE

Case A, N = 1

Case B, N = 1

Case C, N = 2

ReL = 40

ReL = 40

ReR = 180

ReR = 180

ReL = 70 ReR = 180

Re1 = 120

Re1 = 100

Re1 = 40 Re2 = 180

Hopf bifurcation
Re ≈ 60

Figure 6.1: Sketch of the three test cases for sampling.

computed using a database collected using N > 1 different Reynolds numbers Rei.
Since we will always use Nr = 31 we simply note that

Ũ(x, t) ≡ Û [Nr](x, t) =

Nr∑

n=1

an(t)Φn(x). (6.10)

Let us recall that the temporal coefficients an(t) can be evaluated in two ways:

– by projecting the numerical solution of the Navier-Stokes equations onto the POD
modes:

ân(t) =

∫

Ω
U(x, t)Φn(x)dx, (6.11)

– by integration of the reduced order model.

In what follows we denoted ŨDNS and ŨROM the fields computed by projection and
by using the coefficients given by the model prediction respectively. Without loss of
generality, Ũ can be either ŨDNS or ŨROM

In order to test our criterion to improve the POD basis, described in section §6.2.3,
we will consider three initial bases:

– case A, corresponds to an initial database U [Re1] composed by Nt snapshots col-
lected at Re1 = 120 with ReL = 70 and ReR = 180;

– case B, corresponds to an initial database U [Re1] composed by Nt snapshots col-
lected at Re1 = 100 with ReL = 40 and ReR = 180;

– case C, corresponds to an initial database U [Re1;Re2] composed by Nt snapshots
collected at Re1 = 40 plus Nt snapshots collected at Re2 = 180 with ReL = 40
and ReR = 180;

The three cases are summarized in Fig. 6.1. In this study we will always arbitrarily
consider Nt = 200.
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6.2.1 Effect of the Reynolds number variations onto the projection
error

In the following, the reconstruction capabilities of a given POD basis is estimated when
the Reynolds number varies in the interval I = [ReL, ReR]. A natural way to achieve
this is to compare, at each Re ∈ Ih, the numerical solution U(x, t) of the Navier-
Stokes equations to the POD reconstruction Ũ(x, t) computed using a POD basis that
corresponds to a given database U [Re1,...,ReN ]. The numerical solution of the Navier-
Stokes equations can be formally written as:

U(x, t) = Ũ(x, t) +U ′(x, t), (6.12)

where U ′(x, t) denotes the missing scales, i.e. the error made restricting the solution to
the first Nr basis functions

U ′(x, t) = U(x, t) − Ũ(x, t). (6.13)

We defined the average of the L2 norm over a temporal horizon T for missing scales (6.13)
by :

〈U ′〉2 =

∫

T

‖U ′(x, t)‖2dt. (6.14)

Since we have to compute the numerical solution U(x, t) of the Navier-Stokes equation
onto Ih to achieve such comparison, the POD output flow fields Ũ(x, t) can easily
be computed with the projected coefficients an(t) evaluated from (6.11). This error
indicates how the description capability of the POD basis changes due to variations of
the Reynolds number (system parameter). In what follows, the temporal horizon T is
taken to be equal to three vortex shedding periods and thus depends on Re. Figure 6.2
shows the evolution of the error 〈U ′〉2 versus the Reynolds number for the three initial
databases described above. For all cases, we can see that the error is very small at Rei
inside the POD database (of the order of 10−7), and then it growths when the value
of the Reynolds number moves away from Rei. This highlights the fact, as already
seen for control in previous chapter, that the POD basis computed from a database
collected from a given dynamics is not able to give a good representation of flows which
are characterized by different dynamics. We can see in figure 6.2 that model C seems
to be more robust than models A and B. Indeed, the maximal error is smaller for
model C. The reason is that the POD basis for case C is computed from 2 different
dynamics and the other cases from only one, and then it is more robust, as explained
in the previous chapter. The aim is then to determine a sampling of K new sets of
snapshots {Renew

i }N+K
i=N+1 ∈ Ih, to compute the most robust POD basis.

6.2.2 A residuals based error estimator

Since the evaluation of the error U ′(x, t) involved the computation of the numerical
solutions U(x, t) of the Navier-Sokes equations for each Re ∈ Ih, the evaluation of errors
based criteria (6.14) is demanding from a computational viewpoint (Greedy algorithm
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Figure 6.2: Evolution of the error 〈U ′〉2 versus the Reynolds number.

in Bui-Thanh et al. (2008)). It is then interesting to find an accurate estimation of the
error (6.14). To this purpose, we introduced the average of the L2 norm, over the same
temporal horizon T , of the residuals of the Navier-Stokes operator R, evaluated using
flow fields projected onto the POD basis Ũ(x, t) :

〈R(Ũ)〉2 =

∫

T

‖R(Ũ(x, t))‖2dt. (6.15)

A comparison between the (non-dimensional) error 〈U ′〉2 and the (non-dimensional)
residuals 〈R(ŨDNS)〉2 over Ih is performed in figure 6.3. It is interesting to note that
these two quantities show a similar behavior for all the considered test cases, especially
after the Hopf bifurcation at Re ≈ 60. Indeed, the ratio 〈R(ŨDNS)〉2/〈U ′〉2 is approx-
imately a constant over Ih for all test cases. The residuals 〈R(ŨDNS)〉2 is thus a good
estimator of the error 〈U ′〉2. However the use of the residual 〈R(ŨDNS)〉2 is not prac-
tical since it requires the computation of the numerical Navier-Stokes solution U . The
idea is then to approximate the projection residuals R(ŨDNS) with the prediction ones
R(ŨROM ).

A comparison between the projection and prediction residuals over Ih is performed
in figure 6.4 for the cases A, B and C. We recall that the models are calibrated on the
initial set of dynamics and are then integrated using each Reynolds number Re ∈ Ih.
Projection and prediction residuals show a close correlation for all the considered cases
except for Reynolds number below the bifurcation. However, the predicted residuals are
close to the error (compare figures 6.4 and 6.3). It is noticeable that the discontinuity in
the residuals evolution marks the capability of the model to predict the exact position of
the bifurcation at Re ≈ 60 without any knowledge about the critical Reynolds number
of the dynamical bifurcation.
Finally, the predicted residual 〈R(ŨROM )〉2 is a good estimator of the error 〈U ′〉2 and
can thus be used as a criterion to sample the input parameter space (here, Ih).
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(a) Test case A.
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(b) Test case B.
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(c) Test case C.

Figure 6.3: Comparison between the mean projection error 〈U ′〉2 and the mean residuals
〈R(ŨDNS)〉2 for the three test cases under consideration.

6.2.3 A residual based sampling method

As described above, two classes of sampling methods are commonly used: the one shot
and the iterative methods. In this study we propose an approach which couples the ideas
of the two classes. In particular we will present a one shot method, a modified Centroidal
Voronoi Tessellation, based on the Greedy ideas (Bui-Thanh et al. (2008)). The method
proposed here is based on the residuals of the Navier-Stokes operator approximated by
using the flow fields predicted by the POD reduced order model, wtih the same idea of
Grepl & Patera (2005). This allows to reduce the computational costs with respect of
using the reconstruction errorU ′. We consider an initial database U [Re1,...,ReN ] composed
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(a) Test case A.
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(b) Test case B.
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(c) Test case C.

Figure 6.4: Residuals obtained by a POD base built using Re = (40,180). Reynolds
number considered between 40 and 180. Both the ROM predicted residuals (circle) and
the DNS projection residuals (star) are shown

by N×Nt snapshots collected at [Re1, . . . , ReN ]. By using this database the preliminary
low order model is built. Since we want robust POD basis and model, we look for a
sampling {Rei}M

i=1 ∈ IM
h such that the database U [Re1,...,ReM ] produces models leading

to reduction (or minimization in the optimal case) of the error evaluated over the whole
subspace Ih. M is the total number of final points, M = K+N , where N and K are the
dimensions of the starting database and of the set of new Reynolds numbers respectively.
The number of new sampling points to be added has to be fixed as a function of the
desired robustness. However subsequent one shot sampling can be performed forming
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a sort of iterative-one shot method where the dimension of the new partial subspaces
and the number of iterations have to be set. As already pointed out, the residuals of
the Navier-Stokes equations R(ŨROM ) can be easily calculated by integration of the
calibrated ROM (6.5) for all Reynolds numbers in the discretized space Re ∈ Ih. Thus,
the Navier-Stokes residuals predicted by the POD model can be used as density function
in a Centroidal Voronoi Tessellation (CVT, see section §2.5) of the whole subspace Ih.

Set the dimension of the final space equal to M , in order to choose an optimal
placement of the new sampling points N , we propose a procedure based on a similar idea
of the Constrained Centroidal Voronoi Tessellation (Du et al. (2003)), where a classical
CVT is performed with the centers of mass of the regions constrained to belong to a
surface. Here, we carry out a Centroidal Voronoi Tessellation where the new points are
found as centroids of the Voronoi regions, while the starting set of Reynolds numbers are
“frozen”. Thus, widely the older frozen points are not centroids of the resulting Voronoi
regions. Therefore to compute the Frozen Centroidal Voronoi Tessellation (FCVT) a
modified Lloyd’s algorithm can be used, where only the new points have to be centroids
of their regions. The Lloyd’s algorithm described in §2.5 can be modified:

0. Begin with an initial set of M points. (the N first points frozen plus the new K
points).

1. (At iteration i) consider the distribution of K points. (the N first points are
frozen).

2. Construct a Voronoi tessellation associated with these points.

3. Determine the centers of mass of each Voronoi region.

4. Only the new K points are redefined to be the mass centroids while the old points
are frozen.

Then repeat from one to four until the convergence. This algorithm is strongly dependent
on the initial condition. This is clear in one dimensional tessellations. Indeed, for
instance for our case, given a Reynolds number ReL < Re∗ < ReR as frozen point, each
new Reynolds number resulting from the modified Lloyd’s algorithm cannot come out
from the subspace ([ReL, Re

∗) or (Re∗, ReR]) where is placed as initial condition. In
order to avoid this problem, we propose a degenerate method.

We perform a Frozen Centroidal Voronoi Tessellation procedure starting from a ran-
dom subspace (or chosen with any sampling method) of new points Renew

z
M0

z=N+1 ∈
IM0−N , with M0 ≫ K. After the FCVT we exclude from the final configuration the new
point k > N with the smaller average density function over the kth region. This is done
following Greedy method in order to refine where the density function reaches higher
values. The size of the space of the points is then M1 = M0 − 1. This is an iterative
process, and while Mi > M we recompute a new Degenerated FCVT and exclude a
new point k > N . The final configuration Mi = M is weakly dependent on the initial
configuration for M0 ≫ M . The Degenerated FCVT is summed up below, where the
goal is to find a K-dimensional sampling to add at the N -dimensional initial sampling.
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0. Initial sampling with dimension K0 > K. (the N first points are frozen).

1. At iteration i, start process with dimension Mi = Ki +N

– Perform a Frozen Centroidal Voronoi Tessellation

– if Mi = M stop

– if Mi > M go to 2

2. Identify and exclude point k > N of the element with minimum integral

– Mi+1 = Mi − 1. Increment i = i+ 1, then go to 1

The sampling method presented above can be easily transposed for input parameter
subspaces with dimension greater than one. The use of the residuals as error estima-
tion leads to negligible computational costs, even for high dimensional input parameter
spaces, as for instance active control space.

6.3 Results and discussion

The sampling technique described in the previous section was applied in order to improve
the robustness of low order models for the three initial test cases described in section
§6.2. The three models are calibrated over the dynamics of the databases as explained
in section §6.1.2.

In order to increase the robustness we chose to add K = 2 new sampling points in
Re. Starting with K0 = 6 initial random Reynolds numbers, after four iterations the
method gives the final sets of Reynolds numbers :

– Case A: INf
= 100, 55, 160

– Case B: INf
= 120, 80, 165

– Case C: INf
= 40, 180, 90, 130

For Constraint Uniform Sampling (CUS), approximated onto the discretized space Ih,
we have :

– Case A: ICUS = 100, 70, 140

– Case B: ICUS = 120, 90, 150

– Case C: ICUS = 40, 180, 85, 135

The average error and the standard deviation evaluated over the whole subspace I
are respectively defined by:

E =
1

ReR −ReL

∫

I
〈U ′(Re)〉2 dRe, (6.16)
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D =

√∫

I
(〈U ′(Re)〉2 − E)2 dRe. (6.17)

While the error E measures the accuracy of the POD ROM, the standard deviation D
measures its robustness.

Fig 6.6 shows the reconstruction error (6.14) obtained using the FCVT and the
CUS strategies over the Reynolds number subspace Ih for the three test cases A, B
and C. Both projection 〈U ′〉2 prediction 〈U ′

ROM 〉2 errors are plotted. The POD ROM
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(c) Test case C.

Figure 6.5: Comparison of FCVT and CUS reconstruction error for test cases A, B
and C. Both the ROM prediction reconstruction (circle) and the DNS projection (star)
errors are shown.

prediction errors are close to the DNS projection ones. This proves the good behaviour of
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each calibrated reduced order model, showing that they are able to predict the system
dynamics with a negligible error. The standard deviation has been evaluated for the
POD models built using the sampling points found with both the Degenerated FCVT
and the constraint uniform sampling CUS strategies.

A B C

∆E ∆D ∆E ∆D ∆E ∆D

DNS Proj 16.150 47.711 11.120 123.373 -4.577 -7.991
ROM 12.850 41.470 10.854 125.741 9.150 19.804

Table 6.1: FCVT sampling efficiency ∆E and robustness ∆D.
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Figure 6.6: Histogram of difference between the reconstruction errors and standard
deviations using CUS and FCVT sampling.

For a given quantity F we define the percentage of the relative difference by ∆F =
100(FCUS − FFCV T )/FFCV T . The percentage of the relative difference errors and stan-
dard deviations are reported in table 6.1. Note that a positive difference suggests a
smaller error or standard deviation for the Degenerated FCVT than for CUS. The av-
erage reconstruction errors given by ROM prediction are smaller when our sampling
method is used. The reduced order model given by Degenerated FCVT are more robust
in all the considered cases, even if in the third case the average error obtained by projec-
tion for the constraint uniform sampling is smaller. Indeed, for all the considered cases
the average standard deviation is smaller when Degenerated FCVT is used.

As noted above, in the third case the error of reconstruction computed by the POD
dynamical model obtained by Degenerated FCVT is smaller than the one computed by
the CUS. Finally the ROM gives a good behaviour in terms of reconstruction error also in
the case C, starting from constrained points placed on the boundaries of the parameter
space, and in presence of a bifurcation.

Fig. 6.7 shows a comparison between projection and prediction residuals after FCVT
sampling for all the considered test cases. The models are accurate in terms of residu-
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Figure 6.7: Comparison between projection and prediction residuals after FCVT sam-
pling.

als, in agreement with the assumption that the residuals can be used as error estimator.
Again, in the case C, an error is visible. Indeed, the maximum on the predicted residuals
reached across the bifurcation is larger than the maximum residual obtained by projec-
tion; this is due to the fact that the dynamics before Rec ≈ 60 are essentially steady
solutions. For that, a small perturbation on the steady predicted coefficients given by
the low order model is sufficient to give a larger error on the residual estimation.

Finally, for all the considered cases, which cover an adequate variety of possible
situations, the low order models obtained by the proposed sampling method are robust
and accurate in terms of reconstruction error as well as in terms of residuals estimation.
Thus, in a sampling procedure, one can use the Degenerated FCVT to build robust
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parameter dependent reduced order model. This avoids huge computational costs by
using residuals estimation of the calibrated ROM instead of the approximation error
computed by projection. As explained above, this technique can be easily extended to
high dimensional parameter space with negligible computational costs compared to those
required by a procedure based on the reconstruction error evaluation.

6.4 Conclusions

In order to build a robust POD basis in this chapter we developed the degenerated Frozen
Centroidal Voronoi Tessellation, a techniques aimed to an efficient sampling of the input
parameter space. The sampling method is based on a Centroidal Voronoi Tessellation
of the space, where the used density function is the residual of Navier-Stokes equations,
calculated by using the prediction of a POD reduced order model. The use of such an
error estimator, in the place of the approximation error as in the Greedy iterative method
(Bui-Thanh et al., 2008), produces negligible computational costs to perform the whole
procedure. This approach is tested for a Reynolds number adaptive model, for a range
of Reynolds number which covers the whole two-dimensional regime of the considered
flow configuration. The resulting low order models, for all the considered cases, are
accurate and robust to Reynolds variation if compared with those obtained by a classical
Constraint Uniform Sampling of the input parameter space. The obtained models are
robust both in terms of reconstruction error and in terms of residual approximation.
Thus, the FCVT is an efficient method to include several solutions into the starting
database. This result can be interpreted as the fact that the POD basis (and low order
model) reaches the convergence (see section §5.3.2) with the least number of datasets
when degenrated FCVT is used. The decribed techniques can be simply applied to other
(even high dimensional) parameter spaces. For instance, this residual based sampling
could be used in a control strategy, to compute an intial robust low order model, that,
calibrated on the optimal dynamics, can be used in the optimisation without or with a
few updating. The main computational cost being the evaluation of the Navier-Stokes
residual, the technique can be applied easily also to complicated flow configurations.
For high dimensional and large parameter space, the main drawback is to compute the
model integration for huge number of inputs to build the density function. To avoid
this, the residual density can be computed only in a limited number of points. Then the
behaviour on the entire subspace can be recovered by an interpolation technique.
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Chapter 7

Linearized low-order model of
actuated transient flow

The aim of this chapter is to develop and test a linearized low order model of controlled
transient flows. The capability of such a linearized low order model is assessed in a
control optimisation. A linear model of the flow can be used when the target solution is
a steady state. In this case the objective of the controller consists in stabilizing a steady
state of the system. Thus, small oscillations of the system around this target state are
well represented by a linear model. At the same time, designing the controller using a
linear model involves standard techniques and is simpler than using a non-linear model.
Moreover, it is also interesting to explore the capabilities of reduced order models in
estimating unstable modes in the linear stability analysis of a flow since this aspect is
typically very demanding in terms of computational costs. Indeed, this analysis requires
codes simulating the linearized flow equations and, possibly, generating the matrix of
the linearized system, which is not always possible when working with complex tools
as those typically used in engineering applications. For this reason, the starting point
of the present analysis is just the availability of a non-linear code for simulating the
Navier-Stokes equations which cannot be linearized. The reduced order model of the
linearized flow equations is built using only this tool.

On the other hand, the use of a non-linear reduced order model for flow control,
although more expensive and complex, allows more general control strategies (i.e. mini-
mization of general cost functions, different control targets etc...). In Weller et al. (2009)
a control strategy based on a non-linear model is reported. In that reference it is also
shown that the proposed strategy, when used for the particular objective of stabilizing
a steady state for the system, has a clear behavior in terms of the spectrum of the lin-
earized Navier-Stokes operator around the target flow. Thus, a linearized reduced order
model is useful to investigate the effect of such a control strategy on the linear stability
of the actual flow.
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7.1 POD-based model of the linearized Navier-Stokes equa-
tions with feedback control

With reference to fig. 3.1 we consider the same two-dimensional geometry used in chapter
5. We take the same control device of chapter 5, i.e. two jets placed on the cylinder in
opposite phase. We consider a feedback proportional control using some measurements
of vertical velocity given by Nv sensors placed at xj in the cylinder wake on the centre
line. The control law with feedback gains Kj is :

c(t) =

Nv∑

j=1

Kjv(xj , t) (7.1)

The aim of a control optimisation is to find the set of feedback gains Kj that stabilizes
the vortex shedding in the cylinder wake.

The POD-based linear model is built using the snapshots obtained by a non-linear
simulation of the transient flow dynamics, performed with the non-linear Navier-Stokes
code described in chapter 3. The simulation is started from the steady unstable solution.
The starting flow field, which is also the target flow of the controller, is found using the
same code, by imposing the velocity field to be symmetric with respect to the symmetry
line y = 0 and advancing the simulation in time until a steady state is reached. Indeed, in
this particular case, the unstable vortex shedding mode is antisymmetric with respect to
y = 0, and the symmetry constraint is a physically-based trick to suppress the instability
and, thus, to find the steady unstable solution. More general strategies, which can be
straightforwardly applied to an evolutive non-linear code (without the need of deriving
linearizations as needed for Newton-like methods) are described in Kervik et al. (2006)
and Galletti et al. (2004).

Nt snapshots are obtained sampling a part of the transient dynamics, achieved by
using a particular control law c(t) and are used to build a POD model. To this purpose,
every snapshot u(x, t) is now decomposed as follows:

w(x, t) = u(x, t) − u0(x) + c(t)uc(x), (7.2)

where u0(x) is in this case the unstable steady state and uc(x) is a flow field having a jet
velocity equal to 1 on Γc and the velocity vanishing on all the other domain boundaries.
This is obtained as in section §5.1.

Denoting {φn}n=1...Nr
the Nr retained modes obtained by applying the POD to

(w(x, ti))i=1...Nt
, the low-dimensional solution is written :

ũ(x, t) = u0(x) + c(t)uc(x) +

Nr∑

n=1

an(t)φn(x) (7.3)

The Galerkin projection of the Navier Stokes equations onto the POD modes yields
to the low order model (5.3), already detailed in section §5.1.
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The POD basis and the resulting model is built using the flow fieldsw(x, t), Eq. (7.2),
collected using different control laws which derive from different sets of feedback gains.
In accordance with the techniques developed in section §5.2, the POD model is then
calibrated using a multiple dynamics calibration over all the simulations carried out
to collect the snapshot database, and the conditioning of the calibration procedure is
improved by Tikhonov regularization. A partial calibration is realized and all the terms
of the projection matrices are calibrated, with the exception of the convective terms
Bkrs. Moreover, it is imposed that the steady unstable solution u0 is also a steady
solution of the reduced order model and, consequently, the term Ar is forced to vanish.

When the feedback control is found using the velocity field approximated by the
POD model, Eq. (7.1) becomes:

c(t) =

Nv∑

j=1

Kjv(xj , t) =

Nv∑

j=1

Kj

(
v0(xj) + c(t)vc(xj) +

Nr∑

r=1

ar(t)φ
r
v(xj)

)
(7.4)

where φr
v(xj) are the values of the v-component of the POD modes at the sensors.

Note that when steady unstable solution is used as target solution u0, because of the
symmetry, v0(xj) = 0. The control c(t) can be found in explicit form from Eq. (7.4)
by trivial manipulation. After algebraic manipulation, the low order model (5.3) in
matricial form becomes :



ȧ(t) =
(
I −EK(I −Kvc(xv))

−1φv(xv)
)−1

(A+Ca(t) +Ba(t)a(t)

+
(
K(I −Kvc(xv))

−1φv(xv)a(t)
) (
F
(
K(I −Kvc(xv))

−1φv(xv)
)
a(t)

+G+Ha(t)))

a(0) = a0

(7.5)

where xv, the vector of the positions of the sensors, and K, the set of feedback gains,
are used as input parameters.

7.2 Linearized low-order feedback model

In order to perform a stability analysis of the target state u0 and to perform an optimi-
sation of the feedback control gains, the POD model is linearized around the equilibrium
state a∗ = 0, (which corresponds to the flow field u0):




ȧ(t) = L(K,xv)a(t)

a(0) = a0
(7.6)

where:

L(K,xv) =
(
I −EK(I −Kvc(xv))

−1φv(xv)
)−1

(
Ca(t) +

(
K(I −Kvc(xv))

−1φv(xv)a(t)
)
G
)
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Since the system matrix L of the linearized model depends explicitely on the feedback
gains and on the position of the sensors, the model is predictive even when those pa-
rameters are changed with respect to the reference ones used for calibration. As already
stated, the robustness of the model can be increased if, before linearization, a calibration
procedure is used including several dynamics chosen by any sampling method.

The linearized equation (7.6) can be used to perform a classical linear analysis of the
dynamical system. Given the position of the sensors and the set of feedback gainsK, the
stable/unstable eigenvalues of the system L can be evaluated. For each eigenvalue, the
associated eigenvector leads, by means of Eq. (7.3), to an estimation of the corresponding
global mode of the linearized Navier-Stokes operator. A good accuracy on the estimation
of the unstable modes of the full linearized Navier-Stokes problem allows to use the low
order model in a transient control procedure, as described in the following. Note that the
linearized reduced order model is obtained by using a simulation of a non-linear Navier-
Stokes code. Moreover, the system matrix L depends non-linearly on the feedback gains
K and on the position of the sensors xv.Thus, we propose here an iterative control
procedure based on the minimisation of a functional cost, which is described in section
§7.3.

As explained above, the accuracy of the linearized model is an important aspect, and
this is investigated in the following. Note, that the non-linear low order model is able to
reproduce the transient dynamics of actuated flows, as shown in (Galletti et al., 2006)
and in chapter 5. However, here we investigate the accuracy of the linearized low order
model to identify the flow instability when the feedback control is active and varies.
Then, as a first step, it is shown how to reconstruct a global mode associated to an
eigenvector of the linearized POD system. The formal solution a(t) of the system (7.6)
is:

a(t) = ReΛtR−1a0 (7.7)

where Λ is the diagonal matrix of the eigenvalues of L,R is the matrix whose columns are
the corresponding eigenvectors and a0 is the initial condition on a(t). When Eq. (7.7) is
substituted in Eq. 7.2, the fluctuating part of the velocity field ũ′(x, t) = u(x, t)−u0(x)
is obtained as follows:

ũ′(x, t) = QReΛtR−1Q−1ũ′(x, 0) (7.8)

withQ =
(
K(I −Kvc(xv))

−1φv(xv)
)

and ũ′(x, 0) the projection of the initial condition
over the POD modes. Thus, assuming that the eigenvalues of the physical system are
well approximated by the low order model, we can reconstruct the matrix containing
physical eigenmodes :

P ≈ P̃ = QR (7.9)

In particular we are interested in the estimation of the unstable modes, which correspond
to eigenvalues with positive real part.

96



7.2. LINEARIZED LOW-ORDER FEEDBACK MODEL

7.2.1 Results Re = 85

In order to assess the accuracy of the feedback linear model described above, we consider
a Reynolds number Re = 85, at which the instability is fully developed after a slow
transient. In Figure 7.1 time evolution of the lift coefficient calculated on the cylinder
with no control actuation is plotted. We recall that the simulation is carried out by a
non-linear Navier-Stokes code. Note the quick growth of the Cl after the slow transient
regime. In the figure the portion of the transient used to build perform the POD model,
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Figure 7.1: Lift coefficient Cl time evolution, with no control actuation at Re = 85.

which is sampled considering Nt = 250 snapshots, is plotted by a continuous line. This
time interval is chosen starting when the lift coefficient reaches a value of Cl ≈ 0.001
and including about six quasi-periodic flow oscillations. This choice is motivated by the
need of capturing only the most energetic oscillations around the steady state while the
system remains in a flow regime for which a linear approximation is still representative.
We retain only Nr = 6 POD modes to build and calibrate the linearized low order
model. This is motivated by the work documented in (Galletti et al., 2006), where it
is shown that a model similar to the one built here gives a good approximation of the
unstable mode. Thus, the unstable mode estimated by the POD model can be analyzed
to explore its observability and consequently to choose the position of the sensors for
the feedback control. In particular we used only one sensor of vertical velocity, which is
placed in (x = 3.0, y = 0.0), in the area of the first local minimum (maximum in terms
of module) of the v-component of the unstable mode. In figure 7.2 the v-component of
the reconstructed mode is plotted; note that very close to the cylinder, before x ≈ 2.5,
the value of v is very small; thus, placing feedback sensors near the cylinder can be
not an optimal choice to control the unstable mode. In order to test the capability
of the feedback linear low order model to estimate the physical unstable mode in the
presence of an actuation, we performed two numerical simulations of the actuated flow
using two different proportional feedback gains for the sensor placed as described above,
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Figure 7.2: Reconstructed component v of the physical unstable mode. Re = 85

i.e. k = 0.1 and k = 0.2. In figure 7.3 the two lift coefficients obtained by the DNS
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Figure 7.3: Lift coefficient Cl time evolution, with proportional gains k = 0.1 and k = 0.2
at Re = 85.

simulation are shown together with the two portions of the transient used to build the
POD database (solid line). As in the previous case, the two time intervals include six
flow oscillations starting from a value of Cl ≈ 0.001, with Nt = 250 snapshots for each
case. Note that the two initial gains are chosen in a random manner and the instability
is not stabilized with those proportional parameters, even if the growth is retarded when
k = 0.2 is used. Following the procedure explained in section §2.1.2, the low order model
is calibrated over the two dynamics. Then the prediction of the eigenvalues and of the
dynamics prediction and the estimation of the unstable modes are obtained using the
feedback adaptive linearized model for k = 0.1 and k = 0.2. The linearized model is
able to predict the part of transient dynamics used as database, as shown in figure 7.4,
where the first two modal coefficients, obtained by integration of the feedback linear
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model with k = 0.2, are plotted together with the reference solutions. In figure 7.5 (half

Figure 7.4: Projection of the DNS simulations onto POD modes (continuous line) vs.
integration of the linear model (circles) for first (left) and second (right) mode. Feedback
gain k = 0.2.

of) the spectrum of L(k), for k = 0.1 and k = 0.2, is sketched together the unstable
mode estimated by a linearized analysis of the Navier-Stokes operator, denoted in the
figure as DNS (we thank Simone Camarri (DIA, Università di Pisa) for providing the
results obtained with a linearized Navier-Stokes code). As expected, only two unstable
conjugate eigenvalues are predicted by the linear low order model. Note that, as the
value of the feedback gain is increased, the unstable eigenvalues are displaced closer to
the stable region of the complex plane. The estimation of the unstable eigenvalues given
by reduced model is very accurate as well as the effect of the increase of the feedback gain
on the instability. The percentage error on the estimation of the real and the imaginary
part of the unstable eigenvalues are very low and respectively 7.62% and 0.26% when
k = 0.1 is used and 0.11% and 0.12% for k = 0.2. Note that the predicted and physical
unstable eigenvalues are overlapped when k = 0.2 is used. This shows the very good
accuracy of the linearized low order model when used to simulate the linear unstable
dynamics when the feedback control varies. Note that the estimation of the frequency
of the instability (related to the imaginary part of the unstable eigenvalues) is almost
perfect. This is due to the fact that the variation of the frequency is negligible between
the two dynamics. Moreover the plot shows that the effect of the increase of the feedback
gain is larger on the unstable eigenvalues than on all the other stable ones. Thus, in this
configuration and for feedback gains around the values k = 0.1 and k = 0.2, the stable
eigenvalues are not deplaced towards the unstable region by the control actuation. In
figure 7.6 the velocity module of the reconstructed unstable mode for the case k = 0.2
and the one found by a linearized analysis of the Navier-Stokes operator are plotted.
The prediction of the mode is very accurate in the whole domain; only a little difference
can be noted at the outflow due to the influence of the imposed boundary conditions in
the linear Navier-Stokes code. An analogous result is obtained in the case k = 0.1.
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Figure 7.5: Spectrum of the eigenvalues of the POD system matrix L vs. unstable
physical eigenvalues (DNS).

7.3 Design of a control strategy based on the linear model

In this section we describe a control optimisation procedure based on the linear feedback
low order model. In order to stabilize the steady state the unstable eigenvalues needs
to be moved in the stable region of the complex plane. Classical tools for linear control
are not used here; indeed, we have to take into account the robustness of the low order
model. To this aim, while the position of the sensors are kept constant, a function of the
gains K is proposed, such that its minimisation is equivalent to stabilize the system:

J7(K) =
∑Nr

r=1 tanh(Re(λr(K)) − λ∗Re) + αK

∑Nv

j=1 minl=1,...,Nv
((Kj −K0

l )2)(7.10)

where λr are all the Nr eigenvalues predicted by the linear feedback model as K varies,
λ∗Re is the stability margin required, K0 is the set of gains used to build the model and
the parameter αK has to be chosen as a measure of the ”trust region” of the low order
model. In our application we use α = 0.1. The function tanh(·) is chosen to retain the
position of the eigenvalues already stable with a margin larger than λ∗Re, while the other
eigenvalues are modified.

The minimisation, gives an optimal set of parameters K∗ for the present model.
This set of gains are tested in a non-linear Navier-Stokes simulation of the transient.
If the target state is not stabilized a new reduced order model is built with a database
obtained by adding a portion of the transient of the new dynamics to the old POD
database. During the optimisation procedure a maximum number of dynamics in the
POD database can be fixed a priori, then when the maximum number is reached, a
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(a)

(b)

Figure 7.6: Isocontour of the velocity module of the predicted (a) and the physical (b)
unstable eigenmode for the case k = 0.2. Plots obtained with the same scale level.

new set of snapshots substitutes the one with maximum distance |K − K∗|. Again,
a minimisation of the functional (7.10) is carried out and a new set of parameters are
obtained. The procedure is stopped when the steady state is stabilized.

7.3.1 Results Re = 85

In the test described here, the model built using the databases obtained with k = 0.1
and k = 0.2 is initially used for the optimization. The minimisation of (7.10) gives a
new value of the feedback gain k∗ = 0.44. A non-linear simulation of the Navier-Stokes
equations starting from u0 is carried out, and the flow is completely stabilized, as shown
in figure 7.7 and 7.8. In figure 7.7 the lift coefficients obtained with k = 0.1, k = 0.2
and k∗ are plotted. The use of the optimised feedback gain leads to a steady state and
vanishing lift coefficient. Thus, the flow is totally controlled as displayed in figure 7.8,
where the vorticity field of the flow obtained with k∗ at time t = 480 is shown.

Finally, the reduced order model obtained by a non-linear Navier-Stokes code and
then linearized around a steady state, is able to represent, with limited computational
costs, the unstable modes of the linearized Navier-Stokes operator, and a control opti-
misation based on such a linearized model gives a set of input parameters that stabilizes
the actual flow. We recall that the whole procedure can be performed starting from the
simulations of a generic non-linear code as those typically used in enginering applications.
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Figure 7.7: Lift coefficient obtained with k = 0.1, k = 0.2 and k∗. Sensor position
(3.0,0.0) and Re = 85.

Figure 7.8: Vorticity snapshot of controlled flow with k∗ at time t = 480.

The obtained results allow us to use the optimisation based on the linear feedback
low order model in a control procedure for flow at higher Reynolds numbers and/or with
a higher number of sensors.

In order to investigate the capability of such a method for a higher Reynolds number,
in the next section we apply this approach to the flow at Re = 150.

7.3.2 Results Re = 150

In order to set the position of the sensor used in the feedback actuation, we perform
a Navier-Stokes simulation of the uncontrolled flow transient starting from the steady
unstable solution calculated with the same procedure described in section §7.1. A low
order model is built, as for the case at Re = 85, by using a portion of this transient
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history. In particular we used an interval of about five vortex shedding cycles, starting
from a value of Cl ≈ 0.01. In figure 7.9 the transient of the Cl and the relative portion
used to perform the POD for the uncontrolled case is shown together with a Cl time
history which will analyze hereafter. We retain only Nr = 15 POD modes. This choice
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Figure 7.9: Lift coefficient Cl time evolution, with proportional gains k = 0.0 and
k = 0.05 at Re = 150.

Figure 7.10: Reconstructed component v of the physical unstable mode for the uncon-
trolled flow. Re = 150

is motived by the fact that in this analysis we are interested especially in the accuracy of
the primary instability estimation. The reconstructed physical unstable mode presents
a first considerable maximum/minimum of the v-component at (x, y) ≈ (5.0, 0.0) (see
figure 7.13). As for the case at Re = 85 we choose the position of this point to place
the feedback sensor. We perform a controlled simulation to be used in the construction
of the low order model for optimisation. We choose an initial value k = 0.05. The
Navier-Stokes simulation gives an interesting result, in terms of stability. Indeed, the
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dynamics seems more unstable in the zone of linear growth, while the limit cycle reached
has a smaller amplitude than the limit cycle of the uncontrolled case. This is displayed
in figure 7.9, where the lift coefficient obtained with k = 0.05 is plotted together with
the lift coefficient of the uncontrolled flow. The more rapid growth in the actuated case
compared to the uncontrolled one is clearly visible, as well as the fact that the fully
developed shedding is attenuated. Then, the POD basis and the calibrated low order
model are built by using the two portions of the transient highlighted in figure 7.9.
An optimisation step of the functional (7.10) is performed that gives an optimal gain
with opposite sign k∗ = −0.015. This result shows that the initial choice k = 0.05 was
inappropriate. A non-linear simulation is performed with feedback gain k∗ starting from
the steady unstable solution. The evolution of the lift coefficient obtained is plotted in
figure 7.11 together with the ones for k = 0.0 and k = 0.05. The plot presents again the
same peculiar results described above. The instability in this case seems slightly more
controlled in the first part of the transient (note that the resulting gain is weak), while,
after about four shedding cycles, the shedding is intensified compared to the uncontrolled
one. In figure 7.12 the evolution of the eigenvalue referred to the unstable mode is shown.
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Figure 7.11: Lift coefficient obtained with k = 0.0, k = 0.05 and k∗. Sensor position
(5.0,0.0) and Re = 150.

As expected the real part of the eigenvalue decreases when the optimized feedback gain
is applied. Thus, the low order model identifies a weak stabilization of the instability,
while the non-linear simulation, after a small time interval, shows that the flow is not
stabilized and the shedding is amplified.

An interpretation of this phenomenon can be achieved considering the v-component
of the unstable mode. Indeed, recall that the feedback sensor evaluates the v-component
fo the flow velocity and, in order to observe the dynamics concerning the instability, it
is placed in the first min/max of the v-component of the unstable mode. In figure 7.13

104



7.3. DESIGN OF A CONTROL STRATEGY BASED ON THE LINEAR MODEL

0.124 0.126 0.128 0.13 0.132 0.134 0.136 0.138
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Re

Im

 

 

k=0.0
k=0.05
k=−0.0155

Figure 7.12: Spectrum of the eigenvalues of the POD system matrix L for feedback gains
k = 0.0, k = 0.05 and k∗. Re = 150

the v-component of the actual unstable mode is plotted together with the reconstructed
ones obtained by using two low order models. The first one is built on the transient
given by using (k = 0.0, k = 0.05), i.e. the initial low order model; thus, the predicted
unstable mode does not belong to the simulations of the POD database. The second low
order model is built on the dynamics simulated with (k = 0.0, k = 0.05, k = k∗).

In the figure the good accuracy of both the reconstruction obtained by the model built
on the three controls (bottom) and of the prediction of the initial model is clearly visible.
Only a small error around the jet area is present together with a weak asimmetry due
to the fact that a limited number of modes is retained and a small portion of transient
is used to calculate the basis. The corresponding eigenvalue is estimated by the two
models with a relative error of about 11%, but the relative error on the trend of the
deplacement of the eigenvalue, when passing from k = 0.0 to k = k∗, is about 0.14%.

One interesting issue is that both low order models are able to reproduce the modi-
fication of the physical unstable mode. Indeed, the figure displays the translation of the
unstable mode patterns towards the outflow. As a result of this translation, the position
of the feedback sensor corresponds to a zone where the v-component of the unstable
mode is almost null. This could be the reason of the apparent flow stabilization in the
first instants of the transient followed by an amplified shedding instability. Indeed, in
the first time portion the unstable mode is still unmodified and the feedback sensor is
able to capture the instability; when the mode is more and more translated, the zone
with v component equal to zero reaches the sensor and the instability grows.

This behaviour suggests, in agreement with similar results of Min & Choi (1999) for
a circular cylinder, that a simple optimisation procedure with only one sensor is not
possible for this Reynolds number (an analysis of the intensity of the modification of the
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Figure 7.13: Reconstructed component v of the physical unstable mode with k∗. Re =
150. Physical mode (top) vs. Mode reconstructed by model built on (k = 0.0, k = 0.05)
(center) vs. Mode reconstructed by model built on (k = 0.0, k = 0.05, k = k∗) (bottom).
Plots obtained with the same scale level.

unstable mode when the Reynolds number varies could be of interest). Thus, several
way to improve the control procedure exist. One way could be, during the optimisation
procedure, to reconstruct the unstable mode at each optimisation step and, when the
placed sensors are reached by the zero zone of the v-component, to add a sensor in the
new modified max/min. This allows to follow the evolution of the unstable mode and to
assure that its dynamics is well captured. Furthermore, one could optimize both on the
feedback gain and on the sensor position, i.e. to find a an evolutive time dependent law
xs(t) for the sensor position related to an evolutive feedback gain Ks(t) that stabilizes
the shedding.
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7.4 Conclusions

The development of an accurate linearized low order model for transient flows with
feedback actuation is performed. Such a reduced model is used in a linear stability
analysis that can not be carried out with a non-linear Navier-Stokes code such as the
one employed in this study. The low dimensional model, even by using a small number of
modes, after calibration results robust to parameter variation, and provides an accurate
prediction of the spectrum of the actual linear system as well as of the trend of the
deplacement of the system eigenvalues when the feedback parameters vary. Moreover,
the spatial reconstruction of the global unstable modes is accurate and the modification
of the physical modes are well captured by the reduced model. This allows to use such
an instrument during a non-linear optimisation in order to check on the effect of the
actuation on the spectrum of the linearized Navier-Stokes system and to check on the
spatial modification of the global unstable modes. Indeed, in Weller et al. (2009), is
shown that other secondary modes can become unstable when a feedback control is
actuated. In this way, even an optimisation on the sensors placement based on the
analysis of the global modes can be performed.
On the other hand, such a linear model could be directly used in a control strategy of a
fully developed flow. Indeed, as shown in Weller et al. (2009) a non linear optimisation,
for Reynolds number Re = 150, is not able to completely stabilize the shedding wake;
thus, by coupling a non linear modeling with a linearized reduced order model, a mixed
optimisation procedure can be performed, by switching from a non-linear approximation
to a linear one when approaching to the target solution.
The model is tested also in a simple feedback control optimisation for transient flows at
Re = 85 and at Re = 150. The controlled steady solution is achieved at Re = 85 by using
a sensor placed in a maximum/minimum of the reconstructed global unstable mode. On
the contrary at Re = 150 a stabilization of the steady solution via feedback control by
using only one sensor in the wake seems not possible, due to the spatial modification of
the unstable mode during the control actuation.
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Chapter 8

Experimental signal analysis by
POD

Fluid dynamics signals are generally characterized by significant fluctuations that need to
be investigated in order to portray their physical origins. A first attempt for the analysis
of the signal fluctuations is a statistical characterization, which permits to detect the
mean value of the signal and features of its time-variation as, e.g., its scattering through
the standard deviation and/or the symmetry or not of the fluctuations around the mean
amplitude through the skewness.

In several conditions, as for instance for wakes and jets, the flow fluctuations could be
characterized by the presence of dominating spectral components, which can be detected
through a conventional Fourier transform. However, this technique becomes highly in-
appropriate when a time-characterization of the amplitude and frequency of the spectral
components is required or when a temporal analysis of the simultaneousness or alter-
nateness of different spectral components must be performed.

When only one spectral component is present in a fluctuating signal, the time-
variation of its amplitude and frequency can be analysed by using the classical Hilbert
demodulation technique (Bendat & Piersol, 1986), providing that certain constraints
on the modulation frequencies are satisfied. If multiple components are present, each
component must be extracted from the source signal before applying the Hilbert de-
modulation, as proposed in Sreenivasan (1985), where a classical band-pass filtering is
applied to extract each spectral component before applying the Hilbert demodulation.

Alternatively, the continuous complex wavelet transform may be directly applied to
characterize the time-variation of a frequency range instantaneously contributing to the
signal fluctuations. However, through the only application of the wavelet transform qual-
itative and statistical characteristics may be gained simultaneously for all the spectral
components present in the considered frequency range and a component extraction may
be performed by using, for instance, the so-called wavelet ridges, as reported in Carmona
et al. (1998).

An interesting procedure for time-frequency analysis based on the wavelet and Hilbert
transforms is proposed in Buresti et al. (2004). First, the main spectral components are
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detected qualitatively or statistically from the fluctuating energy map calculated through
wavelet transform, then each component is extracted through a band-pass filter also
based on wavelet transform, i.e. by neglecting the fluctuating energy outside of a chosen
frequency range and applying the inverse wavelet transform. Once the time-history of
a spectral component is evaluated the Hilbert demodulation may be applied. In that
work the correlation of different spectral components is estimated through the definition
of a cross-analytic signal also based on the Hilbert transform. A more sophisticated
wavelet decomposition is proposed by Olhede & Walden (2004) that extract spectral
components with ad-hoc filter banks, but with band-edge imperfections in correspon-
dence of the boundary of contiguous frequency sub-bands for components spanning at
least two sub-bands, and by almost losing the nonlinear characteristics of the signal.
Summarizing, the wavelet based decomposition techniques are generally non adaptive
because the filter bank must be selected properly for the considered signal, i.e. detect
the main spectral frequencies and choose filter amplitudes by-eye or through a statistical
control. Furthermore, the wavelet based techniques can detect only interwave modula-
tions, i.e. nonlinearities over contiguous oscillations, and not intrawave modulations (see
e.g. Kijewski-Correa & Kareem (2007)).

Doubtless the technique for spectral component detection and extraction from multi-
component signals that has earned more interest in the last decade is the Empirical Mode
Decomposition (EMD) proposed by Huang et al. (1998) (more than 1400 citations for
this paper) and combined with the HT is the so-called Hilbert-Huang transform (HHT).
EMD is a completely empirical technique with no theoretical foundations, producing an
a posteriori basis completely data dependent. Here each spectral component is defined
as an intrinsic mode function (IMF).

A shortcoming of the EMD is the so-called end effect, which is generally common to
all time-frequency techniques. However, end effect can be alleviated through different
methods as proposed in Wu & Qu (2008), Chiew et al. (2005) and Dätig & Schlurmann
(2004) , or by extending the signal as carried out in Coughlin & Tung (2004) and Rilling
et al. (2003).

Another source of error for the EMD is the algorithm used for the peak fitting in
order to generate the upper and lower envelope. Usually a cubic spline is used but other
algorithms can be used as the one presented in Xu et al. (2010), or the segment power
function method proposed by Qin & Zhong (2006).

Beside the abovementioned shortcomings, an actual breakdown of the EMD for fluid
dynamic signals is the so-called mode mixing. It consists in the presence of different
spectral components with completely different frequencies into a single IMF. The origin
of mode mixing seems to be the intermittency of the different spectral components. In
fluid dynamics the signal decomposition aims to produce monocomponent signals for
time-frequencies analysis of the flow features produced by different vorticity structures
or turbulent scales. Therefore, if in a single IMF different spectral components are
present the goal of the signal decomposition is not reached at all. However, mode
mixing can be alleviated or eliminated through an intermittence test proposed by Huang
et al. (1999) that enables to separate different scales, or through several masking signal-
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based techniques (see e.g. Deering & Kaiser (2005) and Senroy et al. (2007)), but this
techniques are not adaptive and are efficient only for stationary signals.

Nevertheless, the primary limitation of the application of EMD for fluid dynamic
signals is that it is basically a bank of dyadic filters, as proved by Flandrin et al. (2004)
and Wu & Huang (2004), in fact Dätig & Schlurmann (2004) stated EMD’s inability
to separate spectral components that have frequency proportion near unity. A dyadic
filter bank is a collection of band-pass filters that have an analogous shape but with
neighboring filters covering half or double of the frequency range of any single filter
in the bank. The frequency ranges of the filters can be overlapped. For example, a
dyadic filter bank can cover frequency ranges as 50 to 120 Hz, 100 to 240 Hz, 200 to
480 Hz and so on. This feature is a real breakdown of EMD in time-frequency analysis
of fluid dynamic signal and it is the main reason for which different techniques are still
investigated.

In this chapter a POD based procedure for time-frequency analysis of one dimensional
fluid dynamics signals is described. The source-signal is firstly manipulated in order to
generate an ad-hoc data set composed by time-portions of the signal, each one composed
by the same number of samples; this data set represents the snapshots for the POD pro-
cedure. The obtained POD modes with higher energy represent the time-histories of the
most representative signal fluctuations, and their Fourier analysis could be used for a
spectral characterization. However, the time-variation of each spectral component can
be only performed by extracting them through a procedure based on the convolution of
the source signal with the required POD modes. The main advantage of this technique
is represented by the automatization in the detection and sorting by the mean fluctuat-
ing energy of the principal components present in a fluid dynamics signal. An iterative
procedure can hence be implemented for extracting spectral components, starting from
the most energetic one and then analysing the residual signal, i.e. the source-signal
from which the extracted spectral component is subtracted. In this way the flow fluctu-
ations can be considered adequately characterized when a sufficient fluctuating energy
is extracted (e.g. a certain percentage of the total fluctuating energy) or when all the
dominant spectral components are extracted. Finally, the time-characterization of each
spectral component may be carried out through the Hilbert transform.

8.1 Application of POD for one-dimensional signals

In the context of experimental fluid dynamics POD is generally used for signal analysis of
data acquired simultaneously from different points, like the ones obtained from different
experimental measuring techniques like, e.g., Particle Image Velocimetry (see e.g. Wei-
land & Vlachos (2009)), pressure taps measurements (see e.g. Kitagawa et al. (2002))
or rakes of hot-wire anemometers (see e.g. Bakewell & Lumley (1967)). However, the
aim of this study is to develop a technique based on POD for an automatic detection
and extraction of principal components from one-dimensional fluid dynamics signals.

For our goals let us consider a generic one-dimensional zero-mean signal u(t), which
can represent a measurement performed in a fixed point of the flow field with a sampling
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frequency Fsamp and a total number of samples equal to Nsamp.

In order to perform POD, a certain number of observations of the analysed process are
required (snapshots); to this end time-portions of the source-signal u(t) are generated, all
with the same number of samplesNperiod. The source-signal is divided into adjacent time-
portions in order to generate the snapshots, whose total number, Nsnap, depends on the
total length of the source-signal, Nsamp, and on the time-length of each snapshot, Nperiod.
An adequately high number of snapshots, Nsnap, is required to perform a satisfying POD,
i.e. in order to separate the typical realizations of the main phenomena from other
random processes. In case this condition is not adequately satisfied, a higher number
of snapshots can be generated through non-adjacent time-portions of the signal, i.e.
partially overlapped, although uniformly distributed along the time-length of the signal
(the maximum number of snapshots that might be generated from a signal composed by
Nsamp samples is equal to Nsamp −Nperiod + 1). This procedure is allowed because the
statistics stationarity of the source signal u(t) is generally satisfied, i.e. the statistical
parameters of u(t) do not change by increasing the total number of samples, Nsamp, and
thus the observations of the process are virtually increased in this way without changing
its statistical and spectral features. Obviously with this technique the observations of
the process are not totally statistically independent; however, this method results to be
very useful to annihilate all random influences or disturbs present in a signal and better
highlight all the typical realizations of the process. With reference to equation (2.3), in
the case of discrete one-dimensional signals the space vector x becomes one-dimensional
and represents the index of the samples of a certain snapshot (x = 1, ..., Nperiod), while
the time t becomes the index of the snapshots (t = 1, ..., Nsnap).

A crucial task of the procedure is represented by the choice of the time-length of
each snapshot, i.e. the number of samples, Nperiod, composing each snapshot and that
is strictly related to the frequency resolution of the analysis; in other words, if ∆f is
the frequency interval between two consecutive elements of the signal power spectrum,
required to discern different spectral components, thus the required Nperiod will be equal
to the ratio between the sampling frequency and the frequency resolution, Fsamp/∆f .
Therefore, the higher is the number of samples composing each snapshot, Nperiod, the
better is the frequency resolution of the spectral analysis; however, in the following it
will emphasized that with increasing frequency resolution the time-resolution of the POD
tool of detecting spectral components with spotting amplitude is reduced. Moreover, it
should be pointed out that the total number of samples of each snapshot, Nperiod, must
be sufficiently high in order to characterize the lower frequencies of interest.

Let now consider the first computer-generated signal designed to assess the POD
procedure for time-frequency analysis. The signal is composed by three different spectral
components (f1 = 40 Hz, f2 = 60 Hz and f3 = 70 Hz) and white noise with an energy
equal to 23% of the total energy of the signal is also added:

y1 = sin(2πf1t) + 2sin(2πf2t) + 4sin(2πf3t) +WN (8.1)

The signal is sampled with a frequency of 1 kHz for 10500 total samples. A time-portion
of the signal is reported in figure 8.1.
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For this test-case 104 snapshots of the signal are generated, each comprising 501
samples, i.e. the used frequency resolution is about 2 Hz. Being the number of snapshots,
Nsnap, higher than the number of the samples of each snapshot, Nperiod, the POD is
performed in the classical manner and not by using the snapshots method of Sirovich;
thus, the POD modes are the vectors that maximize (2.1) and are in number equal to
Nperiod = 501. In figure 8.2 the eigenvalues, which represent the fluctuating energy of
the respective POD modes, are reported as percentage of the total energy of the signal.

The time-series of the first eight POD modes are reported in figure 8.3, while the
respective power spectra are reported in figure 8.4. The most energetic POD modes are,
as expected, POD modes 1 and 2, which are characterized by a dominant frequency at
70 Hz. The POD modes 3 and 4 are related to the component at a frequency f2 = 60
Hz, while 5 and 6 to the component at f3 = 40 Hz; as expected they are sorted by their
energy. The remaining POD modes do not show any dominant spectral component and
are due to white noise.
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Figure 8.1: Time-portion of the computer-generated signal y1.
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Figure 8.2: POD eigenvalues evaluated for the computer-generated signal y1.
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Figure 8.3: Time-series of the first eight POD modes evaluated for the signal y1.
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Figure 8.4: Fourier spectra of the first eight POD modes evaluated for the signal y1.

From the power spectra of the POD modes the dominant frequencies of the signal are
detected; however, their analysis along the time-length of the whole source-signal, u(t),
is not already performed. A first attempt might be carried out by dividing u(t) into
adjacent time-portions composed by Nperiod samples, and then projecting each time-
portion onto the considered POD mode. However, when instantaneous amplitude of
the component varies during the sampling period, a discontinuity can be evaluated at
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the junction between two consecutive time-portions, due to the average-effect performed
through the scalar product on each time-portion (see figure 8.5 where discontinuities are
highlighted by arrows).

Consequently, to avoid these non-physical features on the instantaneous amplitude
of the principal components, an alternative procedure is developed. The technique for
principal component extraction from a source-signal is based on the convolution of the
latter with the considered POD mode. However, a generic POD mode is not a symmetric
filter due to its initial phase, as can be appreciated from figure 8.3, and, thus, the
convolution of the source signal with a function obtained from the convolution of a
POD mode with its respective POD flip-mode is performed. This function, denoted as
POD conv-mode, is characterized by the same power spectrum of the POD mode, and
obviously of its POD flip-mode, but it is a symmetric filter and, thus, no phase-shift is
produced through the convolution of the source-signal with the POD conv-mode. It must
be pointed out that each POD conv-mode is composed by 2×Nperiod − 1 samples, being
obtained through the convolution of discrete functions consisting of Nperiod samples each.

An important step regarding principal component extraction through the convolution
procedure consists in avoiding any amplification or damping. The basic idea of the
filtering is that the convolution of a certain POD conv-mode with itself must produce
the POD conv-mode without any amplification or damping. In order to reach this goal,
the result of the convolution of the source-signal with the considered POD conv-mode
must be multiplied by the factor K:

K =
|conv −mode|

|convolution(conv −mode, conv −mode)| (8.2)

where | • | represents the L1-norm, i.e. the sum of absolute values of the elements,
consistently to the precision adopted for the convolution algorithm.

As regarding the computer-generated signal y1, the three different spectral compo-
nents can now be extracted through the convolution of y1 with the respective POD
modes. The spectral component related to the frequency f1 = 70 Hz can be evaluated
through the POD mode 1 or 2; choosing the POD mode 1, its POD conv-mode is calcu-
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Figure 8.5: Evaluation of spectral components through projection of the source-signal
on the considered POD mode (discontinuities highlighted through arrows).
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lated as reported in figure 8.6a and its power spectrum is compared to the one of POD
mode 1 in figure 8.6b.

The extracted spectral components are reported in figure 8.7 with their moduli ob-
tained through Hilbert transform. Starting from the most energetic spectral component,
i.e. the one related to f1 = 70 Hz, its amplitude is equal to 4 (Eq. 8.1) and through
the spectral component extraction its mean value is found to be 3.996 with a standard
deviation of 0.087 (about 2% of the mean value), demonstrating that the spectral contri-
bution of interest is completely captured by this spectral component. The instantaneous
frequency of the spectral component is also evaluated through Hilbert transform and a
mean value of 69.915 Hz and a standard deviation of 0.013 (about 0.02% of the mean
value) are found.

Since the spectral component related to the POD mode 1 is extracted, a residual
signal can be evaluated by subtracting the extracted spectral component to the source-
signal y1. Subsequently, the spectral component related to the POD mode 3 can be
extracted, i.e. the one corresponding to f2 = 60 Hz. The time-series of this spectral
component is reported in figure 8.7b with its modulus evaluated through the Hilbert
transform (mean value of 2 and standard deviation of 0.087). From the Hilbert transform
of the extracted component a mean value of the instantaneous frequency equal to 59.961
Hz is found with a standard deviation equal to 0.025.

The last component related to the frequency f3 = 40 Hz, is extracted by using the
POD conv-mode 5. The extracted component is reported in in figure 8.7c (modulus
with a mean value of 1.003 and standard deviation of 0.091). The mean instantaneous
frequency evaluated through Hilbert transform is equal to 39.995 Hz with a standard
deviation of 0.053.

Finally, by adding the three extracted spectral components together, it is seen in
figure 8.7d that the reconstructed signal well reproduces the source-signal y1, except for
white noise that is removed.
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Figure 8.6: POD mode 1 of the signal y1: a time-series of the POD conv-mode 1; b
power spectra of POD mode 1 and POD conv-mode 1.
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Figure 8.7: Spectral components extracted from the source-signal y1: a spectral com-
ponent related to f1 = 70 Hz; b spectral component related to f2 = 60 Hz; c spectral
component related to f3 = 40 Hz; d reconstructed signal.

The test case of the computer-generated signal y1 well highlights the advantages
of the POD procedure for time-frequency analysis of one-dimensional signals: the only
parameter to chose is the frequency resolution of the spectral analysis, thus the number
of samples for each snapshot, Nperiod. Conversely to other techniques, no frequency

117



8. EXPERIMENTAL SIGNAL ANALYSIS BY POD

identifications of the main spectral components, preliminary spectral analysis or band-
pass filtering are required (see e.g. Buresti et al. (2004) for details). Since the POD
modes are calculated, in an automatic way the principal components can be extracted
starting from the most energetic one, and the characterization of the signal can be
considered adequately performed when a certain percentage of the fluctuating energy of
the source-signal is extracted or when the dominant spectral contributions are captured.

Beside signals consisting of different spectral components, as simulated through the
signal y1, another case of interest for fluid dynamics is represented by a signal in which
the main spectral component is modulated in amplitude with a certain frequency. This
is the case of the computer-generated signal y2; this signal is:

y2 = [2 + sin(2πf2t)]sin(2πf1t) (8.3)

where the main component at f1 = 50 Hz has a mean amplitude equal to 2 and is
modulated in amplitude with a frequency f2 = 20 Hz. The signal is generated by using
a sampling frequency Fsamp = 1 kHz and it consists in 6000 snapshots composed by
1001 samples each one (i.e. the chosen frequency resolution is about 1 Hz). The power
spectrum evaluated for the signal y2 is reported in figure 8.8.

By performing POD of this signal, six POD modes with a significant energy are
evaluated, as reported in figure 8.9 where the POD eigenvalues are plotted, and their
respective power spectra are reported in figure 8.10. Six POD modes with a significant
energy were expected being the power spectrum of y2 characterized by the presence of
three different spectral contributions.

The most energetic POD modes, i.e. POD modes 1 and 2, represent the main
component at f1 = 50 Hz, whereas the POD modes from 3 to 6 are composed by the two
spectral contributions at frequencies f1 − f2 and f1 + f2, but not both exactly with the
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Figure 8.8: Power spectrum of the computer-generated signal y2.
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Figure 8.9: First six POD eigenvalues evaluated for the computer-generated signal y2.
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Figure 8.10: Fourier spectra of the first six POD modes evaluated for the signal y2.

same energy. All these four POD modes are found with the same POD eigenvalues, i.e.
they have the same significance regarding the energy of y2, because they have the same
origin, viz. the amplitude modulation. It should be noted that these two frequencies are
always coupled and never found as separated spectral contributions, indicating the strict
connection between them; this feature is difficult to highlight through other techniques
for spectral analysis.

By extracting the principal component related to the POD mode 1, the main spectral
contribution at f1 = 50 Hz can be characterized. The accuracy on the reconstruction
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8. EXPERIMENTAL SIGNAL ANALYSIS BY POD

of the source-signal can be estimated through the calculation of the root mean square
value of the difference between the reconstructed signal and y2 as percentage of the
root mean square value of the only y2. By reconstructing the signal with only the
component related to the POD mode 1 this parameter is equal to 33.6%, i.e. error
is very significant because the amplitude modulation is completely missed. However,
when the reconstructed signal is obtained as sum of the components related to the POD
modes 1 and 3, this parameter is drastically reduced to 4.54% because with the only
POD mode 3 the amplitude modulation at f2 = 20 Hz is already well reproduced, as
shown in figure 8.11. With the POD modes 1, 3 and 4 the parameter is slightly reduced
to 4.37%; is 4.3% with the POD modes 1, 3, 4 and 5; finally, with POD modes 1, 3, 4,
5 and 6 is 4.27%.

The procedure for component extraction can be used easily for spectral components
with time-varying amplitude. For instance if a signal comprising a spectral component
with a frequency of 50 Hz and an amplitude that linearly increases with time is consid-
ered, the POD of this signal detects a POD mode characterized by a frequency of 50 Hz
and a constant amplitude. When the respective component extraction is performed, the
actual instantaneous amplitude of the spectral component can be evaluated as shown in
figure 8.12.

However, when the component is not-continuously varying in time, as e.g. in the case
of a spotting contributions, a certain time-delay in the modulus of the extracted spectral
component is observed, as reported in figure 8.13. This delay is strictly dependent on
the used frequency resolution, ∆f , and, thus, on the number of samples of each snapshot
Nperiod. This delay is due to the convolution operation that involves a time-period equal
to 2×Nperiod. Consequently this delay is reduced with reducing the frequency resolution
and, thus, the number of samples of each snapshot, Nperiod. This feature does not depend
on any other parameters like frequency or amplitude of the spectral contribution, or like
the sampling frequency.
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Figure 8.11: Comparison of the reconstructed signal through POD modes 1 and 3 with
the source-signal y2.

120



8.2. APPLICATION OF POD FOR EXPERIMENTAL FLUID DYNAMICS SIGNALS

8.2 Application of POD for experimental fluid dynamics
signals

The procedure based on POD for principal component detection and extraction from one-
dimensional signals is now applied to hot-wire anemometer signals acquired in proximity
of the wake generated from a triangular prism with finite height.

An experimental investigation on the near-wake flow field generated from a prism
with equilateral triangular cross-section, aspect ratio h/w = 3, where h is the height and
w the base edge of the model, and orientated with its apex edge against the incoming
wind was presented in Buresti & Iungo (2009). A sketch of experimental setup is reported
in figure 8.14, where the used frame of reference is also reported. The tests were carried
out at a Reynolds number, based on w, of 1.5 × 105.

For this configuration flow fluctuations at three prevailing frequencies were singled
out, with different relative intensities depending on the wake regions. In particular, the
frequency connected with alternate vortex shedding from the vertical edges of the prism
was found to dominate in the regions just outside the lateral boundary of the wake at
a Strouhal number of about St = fw/U∞ ≈ 0.16, where U∞ is the freestream velocity.
On the other hand, a lower frequency, at St ∼= 0.05, was found to prevail in the velocity
fluctuations on the whole upper wake. Simultaneous measurements carried out over the
wake of the prisms at symmetrical locations with respect to the symmetry plane showed
that these fluctuations correspond to a vertical, in-phase, oscillation of two counter-
rotating axial vortices detaching from the front edges of the free-end. This finding was
confirmed by the results of a LES simulation of the same flow configuration, described in
Camarri & Giannetti (2007), which also highlighted the complex topology of the upper
near-wake produced by the vorticity sheets shed from all the edges of the prism. In
Buresti & Iungo (2009) wake velocity fluctuations were also observed at an intermediate
frequency St ∼= 0.09, and were found to prevail in the symmetry plane. By using the
evidence provided by the abovementioned LES simulation, by flow visualizations and
by pressure measurements over the prism surface, it was suggested that they may be
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Figure 8.12: Comparison of the reconstructed signal with source-signal with linearly
varying amplitude.
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Figure 8.13: Extraction of a spotting spectral component with different spectral resolu-
tion, ∆ f.

caused by a flag-like oscillation of the sheet of transversal vorticity shed from the rear
edge of the body free-end, and approximately lying along the downstream boundary of
the recirculation region in the central part of the near wake.

Let consider a velocity signal characterized by the presence of a single main spectral
component, for instance the one connected to alternate vortex shedding at St ≈ 0.16.
This is the case of the signal acquired aside the wake in correspondence of the point
x/w = 4, y/w = 1.5, z/h = 0.3. The power spectrum of this signal is reported in
figure 8.15. The velocity signals are acquired with a sampling frequency of 2 kHz and
they consist of 216 samples.

For this signal the POD is performed by generating snapshots composed by 1001
samples, indeed by considering a frequency resolution of about 2 Hz. From a prelimi-
nary analysis, a number of 4000 snapshots can be considered sufficiently high in order
to separate the main spectral components from other random effects. The POD eigen-
values that represent the energy associated to the respective POD modes are reported

Figure 8.14: Sketch of the experimental setup: a model orientation; b test layout.
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in figure 8.16.

For the sake of brevity, instead of showing the power spectra of the evaluated POD
modes, the ones related to the extracted spectral components are directly illustrated. In
figure 8.17a the power spectrum of the spectral component connected to the POD mode
1 shows that it corresponds to a narrow-band contribution with a mean Strouhal number
of 0.162 (evaluated through the application of the Hilbert transform to the extracted
spectral component), in good agreement with the findings of Buresti & Iungo (2009),
where an analogous result was found by using the procedure based on wavelet and Hilbert
transforms proposed by Buresti et al. (2004). In that work this result was gained by ap-
plying the wavelet transform to the signal, and through a careful analysis of the wavelet
energy map a band-pass filter was applied after a preliminary sensitivity evaluation of
the central frequency and amplitude of the filter. Subsequently, by applying the inverse
wavelet transform to the selected spectral range, the spectral component of interest is
obtained. With the POD procedure no preliminary spectral analysis is required and,
through an easy eigenvalue problem and a convolution, the spectral component of in-
terest is directly obtained. Beside the reduction of the required computational cost, the
POD procedure is suitable for a complete automated implementation of a procedure for
principal component detection and extraction since no action of the users are needed,
except for choosing as input parameter the frequency resolution required for the spectral
analysis.

Since the main spectral component is extracted, the remaining components can be
evaluated from the residual signals calculated by subtracting from the source-signal the
extracted component related to the POD mode 1. If the POD mode 3 is considered,
as example, (even POD modes are not considered because represent the same spectral
component of their respective odd POD modes) the spectral component whose power
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Figure 8.15: Power spectrum of the hot-wire anemometer signal acquired at x/w = 4,
y/w = 1.5, z/h = 0.3.
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Figure 8.16: POD eigenvalues evaluated for the hot-wire anemometer signal acquired at
x/w = 4, y/w = 1.5, z/h = 0.3.
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Figure 8.17: Power spectra of the components extracted from the hot-wire anemometer
signal acquired at x/w = 4, y/w = 1.5, z/h = 0.3: a component related to the POD
mode 1; b component related to the POD mode 3; c component related to the POD
mode 5; d component related to the POD mode 7; e component related to the POD
mode 9; f residual signal.

spectrum is reported in figure 8.17b can be obtained. It corresponds to a modulation
with a frequency of about St ≈ 0.006. If this spectral component is added to the one
corresponding to the POD mode 1, further characteristics of the process, viz. the alter-
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Figure 8.18: Power spectrum of the hot-wire anemometer signal acquired at x/w = 4,
y/w = 1, z/h = 0.9.

nate vortex shedding, can be evaluated. Analogously, other components characterized
by a decreasing energy, thus significance, can be evaluated like the ones reported in
Figs. 8.17c, d and e. Finally, the power spectrum of the residual signal obtained after
extracting the components related to the POD modes 1, 3, 5, 7 and 9, is reported in
figure 8.17f; if compared to the one of the source-signal in figure 8.15 this demonstrates
that the core of the fluctuating energy of the signal is extracted through these POD
modes.

The time-frequency analysis of the hot-wire anemometer signal acquired at x/w = 4,
y/w = 1 and z/h = 0.9 is also performed. The power spectrum of this signal, reported
in figure 8.18, show that no evident dominant spectral components are present in the
flow fluctuations of the considered signal.

The POD procedure is applied to the signal obtained through a high-pass filtering
with a cut-off frequency St = 0.03 in order to remove the typical flow fluctuations present
in the wind tunnel freestream. This time-frequency analysis is carried out by using a
number of samples for each snapshot equal to 1001, i.e. a frequency resolution of about
2 Hz is used, and a total number of snapshots equal to 8000. The obtained first 100
POD eigenvalues are reported in figure 8.19.

Starting with the extraction of the spectral component related to the most ener-
getic POD mode, viz. POD mode 1, it is seen from its power spectrum, reported in
figure 8.20a, that represents a narrow-band spectral component with a mean Strouhal
number of 0.053. As suggested in Buresti & Iungo (2009), this spectral component is
connected to the dynamics of a couple of axial vortices detaching over the model free-
end and, indeed, being this velocity signal acquired at a relative high position, this
phenomenon results to be the most energetic one.

Moving to the extraction of the spectral component connected to the POD mode 3,
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Figure 8.19: First 100 POD eigenvalues evaluated for the hot-wire anemometer signal
acquired at x/w = 4, y/w = 1, z/h = 0.9.

the corresponding power spectrum (figure 8.20b) shows that this component is clearly due
to the alternate vortex shedding being characterized by a mean Strouhal number of 0.161.
The following analyzed POD mode, POD mode 5, represents a further contribution to
the spectral component due to alternate vortex shedding and, thus, it will be considered
just for obtaining further information regarding this phenomenon.

Interestingly, the spectral component related to the POD mode 7 is characterized by
a mean Strouhal number of 0.096, indicating that it is connected to the oscillations of
the shear layer bounding the recirculation area located just behind the model.

The analysis of the present signal well highlights the optimality of the POD pro-
cedure, that is it allows to detect easily the main phenomena that generate the flow
fluctuations present in the signals. Subsequently, the obtained spectral components can
be characterized statistically and in frequency by using, for instance, the Hilbert trans-
form. Finally, in figure 8.21 a reconstructed signal obtained by adding the three spectral
components connected to the POD modes 1, 3 and 7 is compared to the source-signal
showing that a simplified signal can now be investigated in order to gain information on
the originating phenomena.

8.3 Conclusions

A procedure based on Proper Orthogonal Decomposition (POD) for detection and ex-
traction of principal components present in one-dimensional fluid dynamics signals has
been presented. Time-series representing the source-signal is divided into different time-
portions (snapshots) uniformly distributed along the signal time-length and composed
by the same number of samples. POD is then applied to these snapshots.

The extraction of the principal component corresponding to a certain POD mode is
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Figure 8.20: Power spectra of the components extracted from the hot-wire anemometer
signal acquired at x/w = 4, y/w = 1, z/h = 0.9: a component related to the POD mode
1; b component related to the POD mode 3; c component related to the POD mode 5;
d component related to the POD mode 7.
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Figure 8.21: Reconstruction of the signal acquired at x/w = 4, y/w = 1, z/h = 0.9 by
only using the POD modes 1, 3 and 7.

performed trough the convolution of the source-signal with the considered POD mode,
suitably manipulated. The characterization of the extracted spectral component might
be then performed by using the Hilbert transform in order to evaluate the instantaneous
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amplitude and frequency of the evaluated spectral component.
The procedure based on POD for principal component detection and extraction has

been first assessed for computer-generated signals, like signals composed by different
spectral components, with amplitude modulation, with time-varying amplitude and spot-
ting amplitude. Subsequently, the procedure has been applied for hot-wire anemometer
signals acquired in proximity of the wake generated from a triangular prism with finite
height and placed with a vertical edge against the incoming flow. Flow fluctuations due
to the dynamics of different vorticity structures can be easily characterized through the
analysis of the most energetic POD modes.

One of the main advantages of this technique for time-frequency analysis of one-
dimensional signals is that no detection of the dominant spectral components and no
setting of the parameters necessary for the component filtering are required. Thus, a
preliminary spectral analysis of the source signal is not needed. In the POD procedure
the only input is the required frequency resolution needed to discern the different spectral
components. The POD produces the most typical realizations of the process sorted
by their significance. All these features allow to implement a procedure completely
automated for principal component detection and extraction, and the fluctuations of a
signal can be considered adequately characterized when a certain fluctuating energy is
extracted or when the main spectral components are captured.

128



Conclusions

In this work we developed and analyzed the capability of some tools and methodologies
for circumventing problematics present in the control of a flow over bluff bodies. All the
tools developed are applied to the same test configuration, a flow past a confined square
cylinder, but they can easily be extended to more complicated configurations.
In a closed-loop control strategy, two main issues are involved: the present state esti-
mation of the flow and the optimization of the control parameters. The tools proposed
in this work are based on low order modeling of the flow through Proper Orthogonal
Decomposition. The dynamical reduced order models are obtained by projection of the
Navier-Stokes equations onto the low dimensional subspace spanned by the empirical
POD functions derived from a database of given solutions. The POD model reduction
is widely used in fluid dynamics and for flow control. The main drawback of such low
order modeling is that the resulted models are not robust to parameter variations and
the POD basis is not optimal for representing flows that do not belong to the database.

Different parameter variations can be considered: i.e. time advancement outside
the POD database for non-periodic flows, Reynolds numbers evolution, control input
variation for actuated flows.

The development of an accurate and stable low order model is carried out through
a calibration technique. The model is fitted to reproduce the reference solutions by
minimizing the norm of its residual. The computational cost necessary for calibrating
the reduced order model is negligible, consisting in solving low-dimensional regularized
linear systems.

The construction of such an accurate model allowed us to devise a non-linear ob-
server. The aim is to recover the entire flow fields starting from a limited number of
measurements. Thus, the non-linear observer consists in coupling a dynamical reduced
model with the information given by the measurements. This method provides a good
estimation of the actual state of the flow. The reduced Poisson model is used within the
non-linear observer in order to give an estimation of quantities of engineering interest
such as the lift and drag coefficients.

Applications are carried out with several sensor configurations and at different Reynolds
numbers: at Re = 150 where the flow is completely two-dimensional and for a three-
dimensional flow at Re = 300 where complicated patterns are present. Even for the
complicated three-dimensional flow the reconstruction of the velocity fields is sufficiently
accurate. The major limitation is given by the ability of the POD basis to represent

129



CONCLUSIONS

complicated flow fields that lie outside the database. A POD pressure model based on
the projection of the Poisson equations for incompressible flows is also developed. The
proposed method outperforms the existing linear techniques and seems viable for real-
time control application. Indeed, the non-linear observer can be used for instance to
reconstruct the state of a flow starting from some realistic measurements used in real
feedback configurations, such as pressure sensors placed on the surface of the body.

Then, the study of a procedure, based on heterogeneous calibration, aimed at building
a low order model which is robust to parameter variation is carried out. The aim was to
devise an adaptive model useful for control purposes. Indeed, for a non-linear observer
for control or for a control optimization via reduced order modeling, the employed model
has to be accurate and especially robust to control input variation. The dependence on
the control is integrated in the low order model for a precomputed control law as well as
for a feedback control strategy. The controlled model is built and then calibrated by using
an extended POD basis that includes several dynamics obtained with different control
parameters. In this way, the low order model is improved in stability and accuracy on
all the dynamics that belong to the database, due to the multiple calibration, and at the
same time in robustness to the parameter variation, due to the fact that the POD basis
is enriched by several dynamics. The technique is applied to two-dimensional flows at
Re = 60 and Re = 150 and, for the considered cases, the presented results show that the
models are able to predict dynamical behaviors that are far, in terms of an energy norm,
from the cases included in the database. Moreover, the results show that by passing from
a model built with one dynamic to a model built simply on two dynamics the behavior
is considerably improved.
However, the results suggest that an optimal sampling of the parameter subspace would
certainly be useful. Indeed, there can be cases where a model obtained with a smaller
number of parameters is more robust than a model obtained with a higher number.

For this reason we studied a method to sample, in an optimal manner, the subspace
of the parameters. In this way, given the desired dimension of the database, an efficient
choice of the input parameters used to build a POD model is possible. Thus, we devel-
oped a “one-shot” method (called Frozen Centroidal Voronoi Tessellation) that consists
in sampling the points corresponding to the centroids of a Voronoi tessellation, where the
density function is the Navier-Stokes residual predicted by an initial low order model.
We showed that the residual of the Navier-Stokes equations is a good estimator of the
approximation error, this enables us to use it as a density function in the FCVT. There-
fore, the sampling points are concentrated where the residual is highest, i.e. where the
error of the low order model is large. The method is based on the Greedy idea, where
new sampling points are iteratively placed in the maximum of the approximation error
of the POD basis. The main drawback is that the computational costs of the Greedy
method are huge, due to the fact that to compute the approximation error numerical
simulations are needed. Conversely, by using the residual predicted by the low order
model, the computational costs are negligible. Indeed, the main computation is simply
the integration of the model with variations of the input parameters. The technique
is applied for a Reynolds adaptive model, but it can be simply extended to the other
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kind of adaptive models. In particular the optimal sampling can be applied to high
dimensional spaces of control parameters.
In order to compute the Navier-Stokes residual the POD basis is derived by using the
global snapshots, formed by velocity and pressure. However, if the low order model is
achieved only for the velocity, through a reduced Poisson model the pressure field can
be evaluated as well as the Navier-Stokes residual.
We tested the technique in a range of Reynolds numbers between Re = 40 and Re = 180,
where the flow is completely two-dimensional. The obtained results showed that the
FCVT provides an optimal sampling of the subspace and the low order model is robust
over all the considered range.
Thus, a control optimization procedure, as in Weller et al. (2009), could be performed
starting from a robust model built by sampling the parameter subspace with the FCVT
method and without updating (or updating only a few times) the POD basis during the
optimization.

However, a non-linear optimization procedure, as shown in Weller et al. (2009) can
present a drawback. Indeed, for high Reynolds numbers, during the optimization of
control parameters, other modes in addition to the modes associated to the primary
instability can become unstable. For this, finally, we developed a linearized low order
model of controlled transient flows. The model is used to perform a linear stability
analysis of transient flows obtained by a non-linear simulation. The accurate results
show that the technique can be useful to check the effect of a control actuation on the
actual spectrum of the dynamical system when a linearization of the original system is
inaccessible. The low order model is able to represent both the spectrum of the actual
linearized system and the physical global modes associated to the shedding instability.
Thus, through the linearized low order model, it is possible to observe the effect of the
control actuation on the spatial structures of the global modes, i.e. how the global
modes are modified by the control input.

Finally, for future perspectives, the developed techniques can be used in control ap-
plications. Indeed, the non-linear observer can be integrated in real-time applications
together with the use of a robust low order model. In this way, the accuracy of the state
observation can be guaranteed even for large parameter variations.
Furthermore, a low order model robust to parameter variation, built by using the devel-
oped techniques, can be used both in a complete control optimization and in real-time
control applications, for instance by performing short control optimizations when the
observations record an evolution of the state of the flow.
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Conclusions

Dans ce travail nous avons élaboré et analysé la capacité de certains outils pour éviter les
problématiques présentes dans le contrôle d’un écoulement autour de corps épais. Tous
les outils développés sont appliqués à la même configuration test, à savoir un écoulement
confiné autour d’un cylindre carré. Ces outils peuvent cependant facilement être étendus
à des configurations plus complexes.
Dans une stratégie de contrôle en boucle fermée, deux questions principales sont posées :
l’estimation de l’état réel de l’écoulement et l’optimisation des paramètres de contrôle.
Les outils proposés dans ce mémoire sont basés sur la modélisation réduite de l’écoulement
à travers la Décomposition Orthogonal aux valeurs propres (POD). Les modèles dy-
namiques réduits sont obtenus par projection des équations de Navier-Stokes sur le
sous-espace de dimension réduite généré par les fonctions empiriques POD calculées à
partir d’une base de données de solutions precalculées. La réduction de modèle POD est
largement utilisé en méchanique des fluides et en le contrôle d’écoulement. Le principal
inconvénient de la modélisation d’ordre réduit est que les modèles obtenus ne sont pas
robustes aux variations des paramètres d’entrée du système et la base POD n’est pas
optimale pour représenter les écoulements qui ne font pas partie de la base de données.

Différentes variations de paramètres peuvent être envisagées : i.e. l’avancement du
temps en dehors de la base de données POD pour des écoulements non périodiques,
l’évolution du nombre de Reynolds, la variation des param de contrôle pour écoulements
actionnés.

Le développement d’un modèle réduit précis et stable est effectué par une tech-
nique de calibration. Le modèle est ajusté sur les solutions de référence en minimisant
la norme de son résidu. Le coût de calcul nécessaire pour calibrer le modèle d’ordre
réduit est négligeable, puisqu’il consiste uniquement en la résolution de systèmes linéaires
régularisés de petites dimensions.

La construction d’un tel modèle precis a nous permis de créer un observateur non
linéaire. L’objectif est de reconstruire le champ entier de l’écoulement à partir d’un
nombre limité de mesures. Ainsi, l’observateur non linéaire consiste à coupler un modèle
dynamique réduit avec les informations données par les mesures. Cette méthode fournit
une bonne estimation de l’état réel de l’écoulement. Les applications sont réalisées avec
plusieurs configurations des capteurs et à différents nombres de Reynolds : à Re = 150
(écoulement est à deux dimensions) et à Re = 300 (écoulement à trois dimensions).
Même pour l’écoulement à trois dimensions qui est relativement complexe, la recon-
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struction des champs de vitesse est précise. La principale limitation est donnée par la
capacité de la base POD à représenter les champs d’écoulement placés en dehors de la
base de données. Un modèle POD pour la pression basé sur la projection des équations
de Poisson pour des écoulements incompressibles est également développé. Le modèle
réduit de Poisson est utilisé avec l’observateur non linéaire afin de donner une estima-
tion de quantités d’intérêt industriel, comme le coefficient de portance et de trâınée. La
méthode proposée surpasse les techniques linéaires existantes et semble viable pour appli-
cations de contrôle en temps réel. En effet, l’observateur non linéaire peut être utilisé par
exemple pour reconstruire l’état d’un écoulement à partir de quelques mesures réalistes
utilisés dans des applications de feedback réelles, comme des capteurs de pression placés
sur la surface du corps.

Ensuite, l’étude d’une procédure visant à construire un modèle d’ordre réduit, qui
est robuste à la variation des paramètres, est effectuée. L’objectif était de développer
un modèle adaptif utile pour applications de contrôle. En effet, pour un observateur
non linéaire pour le contrôle ou pour une optimisation du contrôle par modélisation
d’ordre réduit, le modèle utilisé doit être précis et particulièrement robuste à les vari-
ations des paramètres de contrôle. La dépendance de l’actuation est intégrée dans le
modèle d’ordre réduit pour une loi de contrôle précalculée ainsi que pour une stratégie
de contrôle en rétroaction. Le modèle avec le contrôle est construit et calibré en utilisant
un base POD élargie qui inclut plusieurs dynamiques obtenus avec différents paramètres
de contrôle. De cette façon, le modèle réduit est amélioré en stabilité et précision sur
toute les dynamiques qui appartiennent à la base de données, due à la calibration mul-
tiple, et en même temps en robustesse à la variation des paramètres, en raison du fait
que la base POD est enrichie par plusieurs dynamiques. La technique est appliquée à
des écoulements à deux dimensions à Re = 60 et Re = 150 et, pour les cas considérés,
les résultats présentés montrent que les modèles sont capables de prédire les comporte-
ments dynamiques qui sont loin, en termes de norme d’énergie, des cas inclus dans la
base de données. En outre, les résultats indiquent que, en passant d’un modèle construit
avec une dynamique à un modèle construit sur deux dynamiques, le comportement dy-
namique est considérablement amélioré.
Toutefois, les résultats suggèrent que l’échantillonnage optimal du sous-espace des paramètres
est nécessaire. En effet, ils peuvent exister des cas où un modèle obtenu avec un petit
nombre de paramètres est plus robuste qu’un modèle obtenu avec un nombre plus élevé.

Pour cette raison, nous avons étudié une méthode d’échantillonnage optimale du
sous-espace des paramètres. De cette façon, compte tenu de la dimension désirée de
la base, un choix efficace des paramètres à utiliser peut être effectué pour construire
un modèle POD. Ainsi, nous avons développé une méthode “one-shot” (appelée Frozen
Centroidal Voronoi tessellation) qui consiste dans l’échantillonnage des points corre-
spondant aux centres de masse d’un pavage de Voronoi, où la fonction de densité est le
résidu de l’opérateur de Navier-Stokes évalué avec la solution calculée à partir du modèle
réduit initial. Nous avons montré que le résidu des équations de Navier-Stokes est un
bon estimateur de l’erreur d’approximation, ce qui nous permet de l’utiliser comme une
fonction densité dans la FCVT. Par conséquent, les points d’échantillonnage se con-
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centrent là où le résidu est le plus élevé, i.e. où l’erreur du modèle d’ordre réduit est
grande. La méthode est basée sur l’idée de la méthode Greedy, où de nouveaux points
d’échantillonnage sont itérativement placé au maximum de l’erreur d’approximation de
la base POD. Le principal inconvénient est que les coûts de calcul de la méthode Greedy
sont importants, en raison du fait que pour calculer l’erreur d’approximation des sim-
ulations numériques sont nécessaires. Inversement, en utilisant les résidus prédits par
le modèle d’ordre réduit les coûts de calcul sont négligeables. En effet, le calcul prin-
cipal est simplement l’intégration du modèle réduit avec des variations des paramètres
d’entrée. La technique est appliquée à un modèle adaptatif à la variation du nombre de
Reynolds, mais peut être simplement étendue à autres types de modèles adaptatifs. En
particulier, l’échantillonnage optimal peut être appliqué à des espaces de haute dimen-
sion (paramètres de contrôle).
Afin de calculer le residu des équations de Navier-Stokes, la base POD est obtenu en
utilisant les champs complets, formés par la vitesse et la pression. Toutefois, si le modèle
réduit est obtenu à partir seulement de la vitesse, grâce à un modèle réduit de Poisson,
le champ de pression peut être évalué et donc le residu des équations de Navier-Stokes.
Nous avons testé la technique dans une gamme de nombres de Reynolds entre Re = 40
et Re = 180, où l’écoulement est à deux dimensions. Les résultats obtenus ont montré
que la FCVT fournit un échantillonnage optimal du sous-espace et le modèle réduit est
robuste sur tout l’interval consideré.
Ainsi, une procédure d’optimisation du contrôle, comme dans Weller et al. (2009), pour-
rait être effectuée à partir d’un modèle robuste construit par échantillonnage du sous-
espace des paramètres avec la méthode FCVT et sans que la base POD soit mise à jour
(ou mise à jour un nombre limité de fois) pendant l’optimisation.

Toutefois, une procédure d’optimisation non-linéaire, comme decrite dans Weller
et al. (2009) peut présenter un inconvénient. En effet, pour des nombres de Reynolds
élevés, pendant l’optimisation des paramètres de contrôle, des autres modes que ceux-
associés à l’instabilité primaire peuvent devenir instables. Pour cette raison, nous avons
finalement développé un modèle réduit linéarisé du transitoire d’écoulements contrôlés.
Le modèle est utilisé pour effectuer une analyse linéaire de stabilité des écoulements
transitoires obtenus par simulation d’un code non-linéaire. Les résultats sont précis et
montrent que la technique peut être utile pour vérifier l’effet d’une action de contrôle sur
le spectre du système dynamique réel, quand une linéarisation du système original n’est
pas disponible. Le modèle réduit est capable de représenter en même temps le spectre du
système réel linéarisé et les modes globaux physiques associées à l’instabilité du sillage.
Ainsi, avec le modèle linéarisé d’ordre réduit il est possible d’observer l’effet du contrôle
sur les structures spatiales des modes globaux, i.e. comment les modes globaux sont
modifiés par l’action du contrôle.

Enfin, les techniques développées pourraient être utilisées dans des applications de
contrôle. En effet, l’observateur non linéaire peut être intégré dans des applications en
temps réel ainsi que un modèle d’ordre réduit robuste. De cette manière, la précision de
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l’observation de l’état peut être garantie même pour des variations des paramêtres.
En outre, un modèle réduit robuste aux variations des paramètres construit en util-
isant les techniques developpées, peut être utilisé et dans une optimisation complête de
contrôle et dans des applications de contrôle en temps réel, par exemple en effectuant
petits optimisations de contrôle lorsque les observations enregistrent une évolution de
l’état de l’écoulement.
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par jets synthétiques. Congrés national d’analyse numérique (CANUM) Saint Jean de
Monts, Vendée, France. May 26 − 30.

Lombardi E., Buffoni M., Weller J.,Iollo A. (2008) A POD based non-linear
observer for unsteady flows Industrial application of low order models based on POD
Bordeaux, France. March - April 31 − 2.

Weller J., Lombardi E., Iollo A. (2008) An accurate reduced order model for
unsteady flows controlled by synthetic jets. Industrial application of low order models
based on POD Bordeaux, France. March - April 31 − 2.

Bergmann M., Buffoni M., Iollo A., Lombardi E., Weller J. (2007) Simula-
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