Thèse soutenue

Schémas volumes finis en mécanique des fluides complexes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Stella Krell
Direction : Florence Hubert
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2010
Etablissement(s) : Aix-Marseille 1
Partenaire(s) de recherche : Laboratoire : Laboratoire d’analyse, topologie, probabilités (UMR 6632) (Marseille)
autre partenaire : Université de Provence. Section sciences

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Le travail de thèse exposé dans ce manuscrit porte sur le développement et l’analyse numérique de schémas volumes finis de type dualité discrète (DDFV) pour la discrétisation des équations de Darcy en milieu poreux hétérogène anisotrope et celle des équations de Stokes avec viscosité variable. Un point commun à ces problèmes, qui motive l’emploi des schémas DDFV, est que leur résolution par volumes finis nécessite d’approcher toutes les composantes du gradient de la solution. Les schémas DDFV consistent à discrétiser la solution de l’équation simultanément aux centres des volumes de contrôle et aux sommets du maillage. Ce double jeu d’inconnues permet de définir naturellement un gradient discret sur des maillages très généraux, ne vérifiant en particulier pas nécessairement la condition d’orthogonalité classique des maillages volumes finis. On étudie tout d’abord la discrétisation du problème de diffusion scalaire anisotrope pour des conditions aux bords mixtes de type Dirichlet/Fourier. Le schéma que nous proposons permet de construire un algorithme de Schwarz discret associé à une décomposition de domaine sans recouvrement avec des conditions de transmission de type Fourier qui converge vers la solution obtenue sans décomposition. Des expériences numériques illustrent les résultats théoriques d’estimation d’erreur et de convergence des algorithmes de Schwarz DDFV. On se propose ensuite de discrétiser des problèmes de Stokes avec une viscosité variable. Les schémas DDFV correspondant sont en général mal posés. Pour y remédier, on stabilise le bilan de masse par différents termes en pression. Dans un premier temps, on suppose la viscosité régulière. L’analyse du schéma, qui conduit à une estimation d’erreur optimale, repose sur une inégalité de Korn discrète et sur une condition inf-sup discrète utilisant le terme de stabilisation en pression. Dans un second temps, on considère le cas où la viscosité est discontinue. Ces discontinuités doivent être prise en compte par le schéma pour surmonter la perte de consistance des contraintes à l’interface. Ceci nécessite la construction de nouveaux opérateurs discrets définis à l’aide des inconnues artificielles. L’étude théorique devient plus compliquée. Dans tous les cas, l’existence et l’unicité de solutions discrètes sont démontrées, ainsi que des estimations d’erreur optimales. Une première étude de l’extension des schémas DDFV des équations de Stokes aux équations de Navier-Stokes est également présentée. Une généralisation des résultats pour le problème de Stokes avec une viscosité variable et régulière est donnée dans le cas tridimensionnel. Des tests numériques illustrent les différentes estimations d’erreur.