Thèse de doctorat en Conception des circuits micrélectroniques et microsystèmes
Sous la direction de Patrick Pons.
Soutenue en 2009
à Toulouse 3 .
L'insertion des microcommutateurs MEMS RF nécessite une tension d'actionnement et des dimensions toujours plus petites, ce qui confère davantage d'importance aux effets de surfaces, si bien qu'une des principales limitations des performances des microcommutateurs est la qualité du contact et sa fiabilité. Dans ce contexte, nous avons développé un outil de calcul de la résistance de contact électrique de microcommutateurs MEMS RF à contact ohmique. La finalité de l'outil sera l'étude de l'impact des matériaux, de l'état de surface, de la topologie de contact pour augmenter les performances de contact. Un tour d'horizon des différentes méthodes existantes (analytique, numérique, expérimentale) pour analyser le contact mécanique puis électrique de surfaces rugueuses a tout d'abord été réalisé. Puis nous avons conçu et fabriqué deux types de véhicules de test, à actionnement mécanique et à actionnement électrostatique afin de pouvoir tester la méthodologie de modélisation du contact mise en œuvre. L'originalité de cette méthodologie repose sur une nouvelle approche utilisant la méthode d'ingénierie inverse pour générer la forme réelle de la surface. Les progrès apportés sur les logiciels de calcul rendent possible l'implantation de profils réels de surface issus de la caractérisation. L'analyse du contact mécanique est ensuite réalisée à travers des simulations numériques de contact avec le logiciel multiphysique éléments finis ANSYS 11. Cette analyse mécanique est suivie d'une analyse électrique, basée sur des formulations analytiques issues de la théorie du contact électrique et utilisant les résultats de l'analyse précédente. Les surfaces de contact des structures de test sont acquises à l'AFM afin de tester l'outil de calcul. Les résultats obtenus avec la nouvelle méthodologie restent éloignés des mesures expérimentales de résistance de contact. . .
Modeling of metal‐to‐metal contact: application to RF MEMS microswitches
The insertion of RF MEMS micro-switches into real architecture necessitates reduced actuation voltage and dimensions that gives more importance to surface effects. Therefore most of the limitations are related to the quality of the contact and the reliability. In this context, a tool for calculating the electrical contact resistance of DC contact micro-switches has been developed. The tool will be very efficient for investigating the impact of materials, roughness and topology on the quality and the contact performances. Firstly an overview of the different available methods (analytical, numerical, experimental) to analyze the mechanical and electrical contact of rough surfaces has been performed. Then we have designed and fabricated two architectures of test structures, one with mechanical actuation and the other with electrostatic actuation in order to validate the contact modeling methodology that we implement. The originality of this work relies on a novel approach by using a reverse engineering method to generate the real shape of the surface. The mechanical contact analysis is then performed through finite element multi-physic simulation using ANSYS 11 platform. The mechanical analysis is completed with an electrical analysis, using analytical formulations derived from electrical contact theories and referring to the previous mechanical results. . .