Thèse de doctorat en Informatique
Sous la direction de Jean-Charles Faugère.
Soutenue en 2009
à Paris 6 .
Pas de résumé disponible.
Solving systems of polynomial equations with stmmetries using the SAGBI-Gröbner basis
Dans cette thèse, nous proposons une méthode efficace pour résoudre des systèmes polynômiaux dont les équations sont invariantes par l'action d'un groupe fini G. L'idée est calculer simultanément une base de Gröbner SAGBI(une génération des bases de Gröbner à des idéaux de sous algèbres de l'anneau des polynômes) et une base de Gröbner dans l'anneau des invariants symétriques. Plus précisément, nous proposons dans cette thèse deux algorithmes: nous explicitions d'abord un algorithme à la F5 pour calculer efficacement une base de Gröbner SAGBI. Le deuxième algorithme est une version légèrement modifiée de l'algorithme FGLM qui permet de convertir une base de Gröbner SAGBI tronquée d'un idéal de dimension zéro en une base de Gröbner tronquée dans l'anneau des invariants symétriques. Enfin, nous montrons comment ces algorithmes peuvent être combinés pour trouver les racines complexes d'un tel système algébrique.