Numerical method of bifurcation analysis for piecewise-smooth nonlinear dynamical systems

par Quentin Brandon

Thèse de doctorat en Systèmes automatiques

Sous la direction de Danièle Fournier-Prunaret et de Tesushi Ueta.

Soutenue en 2009

à Toulouse, INSA en cotutelle avec l'University of Tokushima (Japan) .

  • Titre traduit

    Méthode numérique d'analyse des bifurcations pour systèmes dynamiques non-lineaires lisses par morceaux


  • Résumé

    Dans le domaine de l’analyse des systèmes dynamiques, les modèles lisses par morceaux ont gagné en popularité du fait de leur grande flexibilité et précision pour la représentation de certains systèmes dynamiques hybrides dans des applications telles que l’électronique ou la mécanique. Les systèmes dynamiques hybrides possèdent deux ensembles de variables, l’un évoluant dans un espace continu, l’autre dans un espace discret. La plupart des méthodes d’analyse nécessitent que l’orbite reste lisse pour être applicable, de telle sorte que certaines manipulations d’adaptation aux systèmes hybrides deviennent inévitables lors de leur analyse. Sur la base d’un modèle lisse par morceaux, où l’orbite du système est découpée en morceaux localement lisses, et une méthode d’analyse des bifurcations hybride, utilisant une application de Poincaré dont les sections sont régies par les conditions de commutation du système, nous étudions le processus d’analyse en détails. Nous analysons ensuite plusieurs extensions de l’oscillateur d’Aplazur, dont la version originale est un oscillateur bidimensionnel non-lisse à commutation. Ce dernier, en tant que système dynamique non linéaire à commutation, est un excellent candidat pour démontrer l’efficacité de cette approche. De plus, chaque extension présente un nouveau scénario, permettant d’introduire les démarches appropriées et d’illustrer la flexibilité du modèle. Finalement, afin d’exposer l’implémentation de notre programme, nous présentons quelques unes des méthodes numériques les plus pertinentes. Il est intéressant de signaler que nous avons choisi de mettre l’accent sur les systèmes dynamiques autonomes car le traitement des systèmes non-autonomes nécessitent seulement une simplification (pas de variation du temps). Cette étude présente une méthode généraliste et structurée pour l’analyse des bifurcations des systèmes dynamiques non-linéaires hybrides, illustrée par des résultats pratiques. Parmi ces derniers, nous exposons quelques propriétés locales et globales de l’oscillateur d’Alpazur, dont la présence d’une cascade de points cuspidaux dans le diagramme de bifurcation. Notre travail a abouti à la réalisation d’un outil d’analyse informatique, programmé en C++, utilisant les méthodes numériques que nous avons sélectionnées à cet effet, telles que l’approximation numérique de la dérivée seconde des éléments de la matrice Jacobienne


  • Pas de résumé disponible.


  • Résumé

    In the field of dynamical system analysis, piecewise-smooth models have grown in popularity due to there greater flexibility and accuracy in representing some hybrid systems in applications such as electronics or mechanics. Hybrid dynamical systems have two sets of variables, one which evolve in a continuous space, and the other in a discrete one. Most analytical methods require the orbit to be smooth during objective intervals, so that some special treatments are inevitable to study the existence and stability of solutions in hybrid dynamical systems. Based on a piecewise-smooth model, where the orbit of the system is broken down into locally smooth pieces, and a hybrid bifurcation analysis method, using a Poincare map with sections ruled by the switching conditions of the system, we review the analysis process in details. Then we apply it to various extensions of the Alpazur oscillator, originally a nonsmooth 2-dimension switching oscillator. The original Alpazur oscillator, as a simple nonlinear switching system, was a perfect candidate to prove the efficiency of the approach. Each of its extensions shows a new scenario and how it can be handled, in order to illustrate the generality of the model. Finally, and in order to show more of the implementation we used for our own computer-based analysis tool, some of the most relevant numerical methods we used are introduced. It is noteworthy that the emphasis has been put on autonomous systems because the treatment of non-autonomous ones only requires a simplification (no time variation). This study brings a strong and general framework for the bifurcation analysis of nonlinear hybrid dynamical systems, illustrated by some results. Among them, some interesting local and global properties of the Alpazur Oscillator are revealed, such as the presence of a cascade of cusps in the bifurcation diagram. Our work resulted in the implementation of an analysis tool, implemented in C++, using the numerical methods that we chose for this particular purpose, such as the numerical approximation of the second derivative elements in the Jacobian matrix.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (72-14 p.)
  • Annexes : Bibliogr. p. 13-14

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque centrale.
  • Disponible pour le PEB
  • Cote : 2009/992/BRA
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.