Résolutions minimales de d-modules géométriques

par Rémi Arcadias

Thèse de doctorat en Mathématiques

Sous la direction de Jean-Michel Granger.

Soutenue en 2009

à Angers , en partenariat avec Laboratoire angevin de recherche en mathématiques (Angers) (laboratoire) .


  • Résumé

    Nous désignons par D l'anneau des germes à à l'origine d'opérateurs différentiels linéaires à coefficients analytiques. Nous étudions les résolutions libres minimales de D-modules, introduites par M. Granger, T. Oaku et N. Takayama. Plus précisément nous considérons des modules admettant une V - filtration le long d'une hypersurface lisse, et les résolutions minimales sont adaptées à cette filtration. Nous nous intéressons particulièrement aux rangs d'une telle résolution minimale, appelés nombres de Betti, ce sont des invariants du module. En premier lieu, nous donnons des résultats généraux : nous ramenons le calcul des nombres de Betti à une situation d'algèbre commutative et nous définissons les résolutions minimales génériques. Ensuite, nous considérons une singularité d'hypersurface complexe f = 0 et le module N = D x , t Fs introduit par B. Malgrange, dont la restriction le long de t=0 fournit la cohomologie locale algébrique du faisceau des fonctions analytiques à support dans f = 0. Le module N est naturellement muni de la V -filtration le long de t = 0, nous étudions les nombres de Betti correspondants. Ces nombres sont des invariants analytiques pour l'hypersurface f = 0. Nous les calculons pour f une singularité isolée quasi homogène ou un monôme. Lorsque f est à singularité isolée, nous caractérisons la quasi-homogénéité en termes des nombres de Betti.

  • Titre traduit

    Minimal resolutions of geometric D-modules


  • Résumé

    Let D be the ring of germs at the origin of linear dierential operators with analytic coefficients. We study minimal free resolutions of D-modules, introduced by M. Granger, T. Oaku and N. Takayama. More precisely we consider modules endowed with a V -filtration along a smooth hypersurface, and the resolutions are adapted to this filtration. We focus on the ranks of such a resolution, which we call Betti numbers, they are invariant for the module considered. First, we give some general results : we reduce the computation of the Betti numbers to a commutative algebra problem, and we dene generic minimal resolutions. Next, we consider a complex hypersurface singularity f = 0 and the module N = D x , t Fs introduced by B. Malgrange, whose restriction along t = 0 gives the algebraic local cohomology of the sheaf of analytic functions with support in f = 0. The module N is naturally endowed with the V -filtration along t = 0, we study the Betti numbers associated to this data. Those numbers are analytical invariants for the hypersurface f = 0. We compute them in the quasi homogeneous isolated singularity case and in the monomial case. In the isolated singularity case, we characterize the quasi-homogeneity in terms of the Betti numbers.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (113 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 112-113

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Angers. Service commun de la documentation. Section Lettres - Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.