Thèse soutenue

Réalisation de pinces optiques pour la manipulation de nano et micro objets individuels d'intérêt chimique ou biologique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Mariela Rodriguez-Otazo
Direction : Angel Augier-CalderinJean-Pierre Galaup
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance en 2008
Etablissement(s) : Paris 11 en cotutelle avec Université de La Havane
Partenaire(s) de recherche : autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)

Résumé

FR  |  
EN

Nous avons construit une expérience de pinces optiques basée sur l'utilisation d'un microscope optique inversé. Deux classes de micro objets ont été étudiées : 1 - Des particules colloïdales sphériques ou approximativement sphériques, soit homogènes tels des colloïdes de silice pure élabores par méthode sol-gel ou des billes commerciales de latex, soit inhomogènes tels des particules composites constituées d'un coeur métallique d'or entouré d'une coquille de silice. 2 - Des micro-monocristaux d'une molécule organique fluorescente présentant une forme non sphérique, parallélépipédique. Notre étude a démontré un piégeage efficace même sur les plus petites particules contenant un noyau d'or. Pour les nanoparticules hybrides d'or-silice, la constante élastique du piège optique expérimentalement mesurée est plus forte que pour les nanoparticules de silice avec un diamètre semblable. Ce résultat est en accord avec un modèle simple fondé sur l'accroissement de la polarisabilité de la particule dû à la présence du noyau d'or. L'influence de la polarisation de la lumière a été étudiée et nous avons discuté le choix du détecteur de position. Les microcristaux organiques s'orientent de sorte que leur axe long soit dans la direction axiale du faisceau de piégeage, l'axe court suit la direction de la polarisation linéaire du faisceau. En polarisation circulaire ou elliptique, les cristaux se mettent spontanément en rotation avec des vitesses de rotation tout à fait élevées, jusqu'à 500 tours par seconde. C'est la première fois qu'un tel résultat est reporté pour des particules de la taille de nos cristaux. Un autre résultat surprenant est que lorsque la puissance incidente augmente, la vitesse de rotation augmente aussi comme attendu mais après passage par un maximum, alors que la puissance continue de croître, la vitesse de rotation diminue jusqu'à arrêt complet de la rotation, et cette évolution n'est pas réversible ! La thèse présentée est une thèse réalisée dans un cadre de cotutelle entre l'Université Paris 11 et l'Institut Supérieur des Sciences et Techniques Avancées - Université de La Havane à Cuba.