Thèse de doctorat en Sciences. Mathématiques
Sous la direction de Halim Doss.
Soutenue en 2006
à Paris 9 .
Nous montrons des principes de grandes déviations pour des solutions d'équations différentielles stochastiques progressives rétrogrades à horizon déterministe, et nous donnons une application de ces résultats à la théorie de la gestion du risque de crédit. Nous étudions également l'existence, l'unicité et la stabilité des solutions d'équations différentielles stochastiques rétrogrades à horizon aléatoire sous de nouvelles hypothèses. Nous établissons des principes de grandes déviations pour les solutions de telles équations, construites à partir d'une famille de processus de Markov dont le coefficient de diffusion tend vers zéro. Nous en déduisons des résultats de convergence de solutions d'équations aux dérivées partielles non linéaires, elliptiques et paraboliques, qui étendent ceux de Freidlin et Wentzell.
Properties of solutions of backward stochastic differential equations with determinist or random terminal time
We prove large deviations principles for solutions of forward-backward stochastic differential equations with determinist terminal time, and we give an application of these results to the theory of credit risk management. We also study the existence, uniqueness and stability of solutions of backward stochastic differential equations with random terminal time under new assumptions. We establish large deviations principles for the solutions of such equations, related to a family of Markov processes, the diffusion coefficient of which tends to zero. We deduce from these results some theorems of convergence of solutions of non linear partial differential equations, elliptic and parabolic, which extend Freidlin and Wentzell's.