Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes

par Slah Sahmim

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Fayssal Benkhaldoun.

Soutenue en 2005

à Paris 13 .


  • Résumé

    Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, même à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint-Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vàzquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasique des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la jacobienne du système. On montre que pour lles configurations faiblement non hyperboliques, on peut calculer le signe de la jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grnde précision, que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.

  • Titre traduit

    Afinite volume scheme based on matrix sign and devoted to non homogeneous systems


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 167 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. en fin de chapitres

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
  • Disponible pour le PEB
  • Cote : TH 2005 040

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2005PA132012
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.