Modèles de dimères : comportements limites

par Cédric Boutillier

Thèse de doctorat en Mathématiques

Sous la direction de Richard Kenyon.

Soutenue en 2005

à Paris 11 , en partenariat avec Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne) (autre partenaire) .


  • Résumé

    Le modèle de dimères est un système de mécanique statistique qui modélise l'adsorption de molécules diatomiques sur la surface d'un cristal, représenté par un réseau périodique plan biparti. On attribue à chaque type d'arête une énergie. Pour une telle distribution d'énergie, il existe une famille à deux paramètres de mesures de Gibbs, dont le comportement est classifié en trois phases : gazeuse, liquide, solide. Dans la première partie, on étudie le comportement d'un tel système près de la transition liquide-solide. En examinant le cas du réseau hexagonal, nous exhibons deux types de comportements limites. Le premier est une collection de chemins aléatoires conditionnés à s'éviter. Le deuxième, le modèle du collier de perles, est un processus ponctuel sur ZxR. Ces deux modèles limites ont pour marginales le processus déterminantal sur R avec noyau sinus, décrivant aussi les valeurs propres des grandes matrices aléatoires de l'ensemble GUE. Le modèle du collier de perles est universel : on montre qu'il est la limite de tout modèle de dimères sur un graphe planaire biparti périodique. Dans une deuxième partie, on étudie la statistique des motifs dessinés par des dimères. Les fluctuations de densité d'un motif convergent à la limite d'échelle vers un champ gaussien. Dans le cas liquide, l'objet limite est une combinaison linéaire d'une dérivée du champ libre et d'un bruit blanc indépendant. Pour une mesure gazeuse, la limite est juste un bruit blanc. Enfin, on aborde un problème de dénombrement de chemins sur le graphe-échelle, lié à l'étude du noyau de la chaleur sur le groupe de l'allumeur de réverbères, ainsi qu'à celle des opérateurs de Schrödinger aléatoires.

  • Titre traduit

    Dimer models : limiting behaviours


  • Résumé

    The dimer model is a system from statistical mechanics modelizing the adsorption of diatomic molecules on the surface of a crystal, represented by a bipartite biperiodic planar graph. An energy is assigned to every type of edge. For such a distribution of energy, there exists a two-parameter family of Gibbs measures on configurations, the behaviour of which is classified into phases: gaseous, liquid or solid. In the first part, we study the behaviour of such systems near the liquid-solid transition. Considering first the case of the honeycomb lattice, we exhibit two sorts of limit behaviours. The first one is a collection of non-colliding random paths. The second one, called the bead model, is a point random field on ZxR. They both have marginals given by the determinantal random field on R with the sine kernel, describing also the eigenvalues of large random matrices of the GUE ensemble. The bead model is universal: we prove that it is the limit of any dimer model on a bipartite planar periodic graph. In the second part, we study the statistics of patterns made of dimers. We prove that the fluctuations of pattern density converge in the scaling limit to a Gaussian random field. When the measure is liquid, the limiting object is a derivative of the free field plus an independent white noise. For a gaseous measure, the limit is a white noise. In the last chapter, we solve a counting problem of paths on the ladder graph. This problem is related to the asymptotics of the heat kernel on the lamplighter's group, as well as to spectral theory of Schr\"odinger operators with random potential.

Autre version

Cette thèse a donné lieu à une publication en 2006 par [CCSD] à Villeurbanne

Modèles de dimères : comportements limites

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (155 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 151-155

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DIBISO. BU Orsay.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(2005)177
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : BOUT

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2005PA112177
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.