Thèse de doctorat en Informatique et traitement du signal
Sous la direction de Rachid Deriche.
Soutenue en 2004
à Nice .
Intégration d'attributs et évolutions de front en segmentation d'images
La détection et l'extraction automatique de régions d'intérêt à l'intérieur d'une image est une étape primordiale pour la compréhension d'images. Une multitude d'études dédiées à ce problème ont été proposées durant les dix dernières années. Cependant, la plupart d'entre eux introduisent des heuristiques propres au type d'image considéré. La variété des caractéristiques possibles définissant une région d'intérêt est le principal facteur limitant leur généralisation. Dans cette thèse, nous proposons une formulation générale qui permet d'introduire chacune de ces caractéristiques. Plus précisément, nous considérons l'intensité de l'image, la couleur, la texture, le mouvement et enfin, la connaissance à priori sur la forme des objets à extraire. Dans cette optique, nous obtenons un critère probabiliste à partir d'une formulation Bayésienne du problème de la segmentation d'images. Ensuite, une formulation variationnelle équivalente est introduite et la segmentation la plus probable est finalement obtenue par des techniques d'évolutions de fronts. La représentation par ensembles de niveaux est naturellement introduite pour décrire ces évolutions, tandis que les statistiques régions sont estimées en parallèle. Ce cadre de travail permet de traiter naturellement des images scalaires et vectorielles mais des caractéristiques plus complexes sont considérées par la suite. La texture, le mouvement ainsi que l'à priori sur la forme sont traités successivement. Finalement, nous présentons une extende notre approche aux images de diffusion à résonance magnétique où des champs de densité de probabilité 3D doivent être considérés.
Automatic detection and selection of regions of interest is a key step in image understanding. In the literature, most segmentation approaches are restricted to a particular class of images. This limitation is due to the large variety of cues available to characterize a region of interest. Targeting particular applications, algorithms are centered on the from most relevant cue. The limiting factor to obtain a general algorithm is the large variety of cues available to characterize a region of interest. It can be gray-level, color, texture, shape, etc. . . In this thesis, we propose a general formulation able to deal with each one of these characteristics. Image intensity, color, texture, motion and prior shape knowledge are considered. For this purpose, a probabilistic inference is obtained from a Bayesian formulation of the segmentation problem. Then, reformulated as an energy minimization, the most probable image partition is obtained using front evolution techniques. Level-set functions are naturally introduced to represent the evolving fronts while region statistics are optimized in parallel. This framework can naturally handle scalar and vector-valued smooth images but more complex cues are also integrated. Texture and motion features, as well as prior shape knowledge are successively introduced. Complex medical images are considered in the last part with the case of diffusion magnetic resonance images which gives 3D probability density fields.
Cette thèse a donné lieu à une publication en 2008 par [CCSD] à Villeurbanne
Cue integration and front evolution in image segmentation