Thèse de doctorat en Sciences de l'ingénieur. Métrologie. Matériaux
Sous la direction de Sauveur Bénet.
Soutenue en 2003
à Perpignan , dans le cadre de École doctorale Énergie environnement (Perpignan) .
Les performances des matériaux modernes de protection thermique et mécanique sont directement liées à leurs propriétés thermiques à l'échelle microscopique. Ces matériaux sont souvent constitués d'un assemblage complexe dont il faut être en mesure de caractériser et prévoir le vieillissement. L'intérêt et l'originalité du travail présenté consistent en l'élaboration de deux modèles permettant d'analyser, sur le principe de la microscopie photothermique par photoréflexion modulée, les transferts thermiques à l'échelle micrométrique dans des matériaux présentant des microfissures ou des interfaces. Les hétérogénéités sont modélisées soit par une résistance thermique de contact (RTC), soit par un troisième corps thermique (TCT) d'épaisseur non nulle et aux propriétés thermiques spécifiques. Ces deux modèles ont permis, pour la première fois, d'établir une expression analytique du champ de température à la surface du matériau soumis à une contrainte thermique localisée et présentant des hétérogénéités perpendiculaires à la surface. Une étude de sensibilité permet de préciser les conditions optimales d'expérimentation en vue d'une estimation des paramètres thermo-physiques des hétérogénéités. Les résultats expérimentaux concernent des interfaces cuivre-acier, chrome-acier, et des micro-fissures dans des dépôts de chrome.
Thermal tranfert on a microscopic scale in materials with heterogeneous structure interfaces characterization by photothermal microscopy by modulated photoreflexion
Performances of modern materials for thermal and mechanical protection are directly related to their thermal properties on a microscopic scale. These materials often consist of a complex assembly of which it is necessary to be able to characterize and envisage ageing. The interest and the originality of this work lie in the development of two models based on the principle of photothermal microscopy by modulated photoreflexion allowing to analyse and to understand the thermal transfers on a micrometric scale in materials presenting microscopic cracks or interfaces. These heterogeneities are modelled either by a thermal contact resistance (TCR) or by a third thermal body (TTB) with non-null thickness and specific thermal properties. These two models lead to the analytical expression of the temperature field on the surface of a material submitted to a localized thermal stress and showing heterogeneities perpendicular to its surface. A sensitivity study gives the optimal experimental conditions to estimate the thermophysical parameters of the heterogeneities. The experimental results concern copper-steel, chromium-steel interfaces and microscopic cracks in chromium deposits.