Equations différentielles stochastiques progressives-rétrogrades : application à l'homogénéisation des EDP quasi-linéaires

par François Delarue

Thèse de doctorat en Informatique et mathématiques appliquées

Sous la direction de Etienne Pardoux.

Soutenue en 2002

à Aix-Marseille 1 , en partenariat avec Université de Provence. Section sciences (autre partenaire) .


  • Résumé

    Les travaux exposés dans cette thèse traitent d'une façon assez générale des équations différentielles stochastiques progressives-rétrogrades (en abrégé EDSPR). De telles équations possèdent entre autres l'intérêt de fournir une représentation probabiliste des solutions d'EDP quasi-linéaires. Dans cette optique, nous sommes motivés par l'étude, à l'aide de cet objet probabiliste, de l'homogénéisation de telles EDP. En réalité, afin de poursuivre au mieux un tel objectif, nous développons dans un premier temps le cadre préexistant de la théorie des EDSPR. Cette première phase de travail nous permet d'établir un résultat supplémentaire d'existence et d'unicité des solutions, nécessitant comme hypothèse principale l'uniforme ellipticité de la matrice de diffusion. Notre démarche consiste à combiner techniques probabilistes et estimations a priori des solutions d'EDP quasi-linéaires. Dans un deuxième temps, nous parvenons à démontrer, à l'aide de techniques purement stochastiques, ces estimations analytiques, et à établir ainsi une preuve exclusivement probabiliste du résultat d'existence et d'unicité précédemment mentionné. Ces travaux préliminaires nous permettent de nous consacrer ensuite à l'application à l'homogénéisation des EDP quasi-linéaires. Dans un premier temps, nous nous attachons au cas d'équations paraboliques à structure périodique, en se fondant à la fois sur des propriétés de stabilité des EDS (progressives)-rétrogrades et sur des techniques de convergence faible. Nous étendons finalement dans un second temps cette approche au cas d'équations à coefficients aléatoires

  • Titre traduit

    Forward-backward stochastic differential equations : application to the homogenization of quasilinear PDEs


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (220 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. [217]-220

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-2002-DEL
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.