Convergence en loi d'intégrales stochastiques et estimateurs des moindres carrés de certains modèles statistiques instables

par Brahim Benaid

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Benoît Truong Van.

Soutenue en 2001

à Toulouse, INSA .


  • Résumé

    La motivation de cette thèse est d'étudier les lois asymptotiques des estimateurs des moindres carrés des paramètres de certains modèles linéaires instables plus généraux que les AR considérés par Chan Wei (1988) et ARMA par Truong-Van et Larramendy (1996). Comme les statistiques définissant ces estimateurs peuvent être considérés comme des intégrales stochastiques discrètes, nous avons commence "par mettre en place un outil d'étude asymptotique" : L'étude de la convergence en loi de certaines intégrales stochastiques discrètes, d'une part en nous inspirant des résultats de Kurtz et Protter (1991) sur la convergence en loi de semi-martingales et d'autre part en introduisant une nouvelle technique d'approximation différente de celle classique par des martingales. On a appliqué ensuite ces résultats de convergence en distribution à l'étude des lois asymptotiques des estimateurs des moindres carrés des paramètres AR des modèles ARMAX(p,r,q) avec q>0 et IARCH purement instables

  • Titre traduit

    Convergence in law of stochastic integrals and least squares estimators for some unstable statistics models


  • Résumé

    In many recent applications, statistics are under the form of discrete stochastic integrals. In this work, we establish a basic theorem on the convergence in distribution of a sequence of discrete stochastic integrals. This result extends earlier corresponding theorems in Chan & Wei (1988) and in Truong-van & Larramendy (1996). Its proof is not based on the classical martingale approximation technique, but from a derivation of Kurtz & Protter's theorem (1991) on the convergence in distribution of sequences of Itô stochastic integrals relative to two semi-martigales and another approximation technique. Furthermore, various applications to asymptotic statistics are also given, mainly those concerning least squares estimators for ARMAX(p,r,q) models and purely unstable integrated ARCH models

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 153 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 151-153

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque centrale.
  • Disponible pour le PEB
  • Cote : 2001/625/BEN

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-2002-BEN
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.