Approximation de variétés par réseaux de neurones auto-organisés

par Michaël Aupetit

Thèse de doctorat en Génie industriel

Sous la direction de Alain Haurat et de Pierre Massotte.

Soutenue en 2001

à Grenoble INPG .


  • Résumé

    Les problèmes de discrimination, de classification, d'approximation de fonctions, de diagnostic ou de commande qui se posent notamment dans le domaine du génie industriel, peuvent se ramener à un problème d'approximation de variétés. Nous proposons une méthode d'approximation de variétés sous-jacentes à une distribution de données, basée sur une approche connexionniste auto-organisée et procédant en trois étapes : un positionnement de représentants de la distribution par des techniques de quantification vectorielle permet d'obtenir un modèle discret, un apprentissage de la topologie de cette distribution par construction de la triangulation induite de Delaunay selon un algorithme d'apprentissage compétitif donne un modèle linéaire par morceaux, et une interpolation non linéaire mène à un modèle non linéaire des variétés. Notre première contribution concerne la définition, l'étude des propriétés géométriques et la proposition d'algorithmes de recherche d'un nouveau type de voisinage "[gamma]-Observable" alliant des avantages du voisinage des k-plus-proches-voisins et du voisinage naturel, utilisable en grande dimension et en quantification vectorielle. Notre seconde contribution concerne une méthode d'interpolation basée sur des "noyaux de Voronoi͏̈" assurant la propriété d'orthogonalité nécessaire à la modélisation de variétés, avec une complexité de calcul équivalente ou plus faible que les méthodes d'interpolation existantes. Cette technique est liée au voisinage [gamma]-Observable et permet de construire différents noyaux gaussiens utilisés dans les réseaux RBFs. Les outils développés dans cette approche originale sont appliqués en approximation de fonctions pour l'identification d'un préhenseur électropneumatique, en approximation de variétés, et en discrimination et analyse de données. Il est notamment montré qu'il est intéressant d'utiliser les voisins 0. 5-observables pour définir les points frontières entre classes et affecter les éléments à leur classe d'appartenance.

  • Titre traduit

    Approximation of manifolds with self-organizing neural networks


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (iv-239 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 229-239

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc. Bibliothèque du Laboratoire d'informatique, Systèmes, Traitement de l'information et de la connaissance (LISTIC).
  • Non disponible pour le PEB
  • Cote : T L2001/128
  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : TS01/INPG/0128
  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Disponible pour le PEB
  • Cote : TS01/INPG/0128/D

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2001INPG0128
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.