Sur les représentations algébriquement irréductibles des groupes de Lie exponentiels et nilpotents

par A. Salma Mint Elhacen

Thèse de doctorat en Mathématiques

Sous la direction de Jean Ludwig.

Soutenue en 1999

à Metz .


  • Résumé

    Cette thèse se compose de deux parties différentes : la première partie consiste à caractériser les représentations algébriquement irréductibles (T, V) de L1(G) (G un groupe de Lie connexe, simplement connexe, résoluble exponentiel) sur un espace de Banach V par des nouvelles représentations ( [pi] fraction l/p, Vo(p,l) où p est un multi-indice et l [appartient à] g*. Dans la deuxième partie, nous caractérisons les idéaux premiers et les idéaux maximaux de l'algèbre L1[omega] (G) avec G un groupe de Lie connexe et simplement connexe nilpotent et [omega] un poids polynomial sur G. Nous prouvons la propriété de Wiener pour l'algèbre L1[omega] (G). Ensuite nous déterminons Prim (L1[omega] (G)). Enfin, nous caractérisons toutes les représentations algébriquement irréductibles et topologiquement irréductibles de L1[omega] (G

  • Titre traduit

    On the Algebraically Irreducible Representations of Exponential and Nilpotent Lie Groups


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (148 f.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. f. 145-148

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la Documentation. Bibliothèque du Saulcy.
  • Non disponible pour le PEB
  • Bibliothèque : Université de Lorraine. UFR Mathématique, Informatique, Mécanique et Automatique. Institut Elie Cartan Metz.
  • PEB soumis à condition
  • Cote : Th. MIN s
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.