Thèse de doctorat en Mathématiques
Sous la direction de Jean Ludwig.
Soutenue en 1999
à Metz .
Cette thèse se compose de deux parties différentes : la première partie consiste à caractériser les représentations algébriquement irréductibles (T, V) de L1(G) (G un groupe de Lie connexe, simplement connexe, résoluble exponentiel) sur un espace de Banach V par des nouvelles représentations ( [pi] fraction l/p, Vo(p,l) où p est un multi-indice et l [appartient à] g*. Dans la deuxième partie, nous caractérisons les idéaux premiers et les idéaux maximaux de l'algèbre L1[omega] (G) avec G un groupe de Lie connexe et simplement connexe nilpotent et [omega] un poids polynomial sur G. Nous prouvons la propriété de Wiener pour l'algèbre L1[omega] (G). Ensuite nous déterminons Prim (L1[omega] (G)). Enfin, nous caractérisons toutes les représentations algébriquement irréductibles et topologiquement irréductibles de L1[omega] (G
On the Algebraically Irreducible Representations of Exponential and Nilpotent Lie Groups
Pas de résumé disponible.