Thèse soutenue

Modèles déformables surfaciques, implicites et volumiques, pour l'imagerie médicale

FR
Auteur / Autrice : Eric Bittar
Direction : Philippe Cinquin
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance en 1998
Etablissement(s) : Grenoble 1

Résumé

FR

Les progrès des dispositifs d'imagerie médicale permettent l'obtention d'images volumiques, qui contiennent une grande quantité d'information. Une approche efficace de traitement de ces images consiste à utiliser la connaissance a priori de la forme des objets à analyser, et à employer des méthodes intrinsèquement tridimensionnelles. Les modèles déformables répondent à ces deux critères. Nous proposons de formaliser les modèles déformables et leur évolution dans une image dite de données, en distinguant cinq composantes : caractéristiques de liaison, représentation géométrique, déformation, déformabilité, et contrôle. Nous décrivons trois modèles déformables. Nous employons le modèle surfacique des delta-snakes pour reconstruire des objets à partir de points répartis sur leur surface. Nous approximons cette surface par une carte de distance octree-spline. Nous avons mis au point des outils interactifs pour compléter des données manquantes ou déformer directement la surface. Nous proposons ensuite pour ce même type d'application un modèle implicite à base de primitives générant un champ potentiel local. Les primitives sont placées interactivement, ou automatiquement sélectionnées dans l'axe médian discret des données. L'optimisation des paramètres des primitives mène à une représentation compacte des objets. Nous reconstruisons par ces deux modèles des objets numérisés par des capteurs de distance ou segmentés dans des images volumiques. Notre dernier modèle est volumique. Sa déformation hiérarchique par un octree-spline minimise la distance généralisée entre ses caractéristiques et celles des données, sous le contrôle de l'algorithme de Levenberg-Marquardt, et dans les limites imposées par une fonction de régularisation. Nous avons établi un algorithme de calcul de distance généralisée itérée dans un arbre k-d. Nous appliquons ce modèle à la segmentation d'images volumiques. D'autres types d'applications ont également été réalisées.