Stabilite des solutions des equations de transport application a la resolution numerique du systeme de vlasov-poisson

par BRUNO SALANON

Thèse de doctorat en Physique

Sous la direction de Denise Chenais.

Soutenue en 1997

à Nice .

    mots clés mots clés


  • Résumé

    Dans cette these, on etudie en premier lieu la continuite et la derivabilite des solutions d'equations aux derivees partielles lineaires du premier ordre par rapport a des perturbations imposees aux donnees du probleme: domaine sur lequel est posee l'equation, champ de vecteurs et donnee au bord. Nous montrons que la continuite a toujours lieu pour des donnees regulieres. Par contre, nous demontrons que la differentiabilite n'est pas toujours verifiee et nous mettons en evidence une condition suffisante de compatibilite geometrique entre les champs de vecteurs et l'ouvert de travail pour obtenir cette regularite. Dans une deuxieme partie, on enonce et on met numeriquement en oeuvre des algorithmes permettant de resoudre le systeme de vlasov-poisson stationnaire. Les methodes mises en oeuvre sont construites autour d'algorithmes de newton qui necessitent l'analyse de stabilite effectuee prealablement sur les equations aux derivees partielles du premier ordre. Nous proposons de resoudre le systeme de vlasov-poisson, mais on s'interesse aussi tout particulierement a l'approche numerique du regime critique de child-langmuir. Pour la resolution de chacun de ces deux problemes, un algorithme de newton est propose. On presente alors des simulations numeriques en dimension 1 d'espace puis en dimension 2 axi-symetrique.

  • Titre traduit

    Stability of solutions to transport equations application to the numerical resolution of the vlasov-poisson system


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 147 P.
  • Annexes : 36 REF.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Côte d’Azur. Service commun de la documentation. Bibliothèque Sciences.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1997-SAL
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.