Approximation spectrale d'opérateurs

par Farida Hocine

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Mario Ahues Blanchait.

Soutenue en 1993

à Saint-Etienne .


  • Résumé

    Il est bien connu que la convergence fortement stable est une condition suffisante de convergence des éléments spectraux approchées, i. E. Les valeurs propres non nulles, isolées et de multiplicité algébrique finie et les sous-espaces invariants maximaux qui leur sont associés, d'opérateurs linéaires bornés définis sur des espaces de Banach complexes. Dans ce travail, nous commençons par proposer une nouvelle notion de convergence : la convergence spectrale, que l'on montre être une condition nécessaire de convergence fortement stable et suffisante de convergence des éléments spectraux approchés. Nous donnons ensuite des conditions suffisantes de convergence spectrale moins restrictives que celles habituellement utilisées. Nous montrons également la convergence de quelques schémas de raffinement itératif pour l'approximation des bases de sous-espaces invariants maximaux, dans le cadre des méthodes de Newton inexactes et des séries de Rayleigh-Schrodinger, sous certaines des conditions suffisantes de convergence spectrale proposées. Nous donnons ensuite les résultats de quelques essais numériques

  • Titre traduit

    Spectral approximation of operators


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (109 p.)
  • Annexes : 49 références bibliogr.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Jean Monnet. Service commun de la documentation. Section Sciences.
  • Accessible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1993-HOC
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.