Thèse de doctorat en Mécanique des fluides
Sous la direction de Patrick Hébrard.
Soutenue en 1992
à École nationale supérieure de l'aéronautique et de l'espace (Toulouse ; 1972-2007) .
Deux techniques de génération de maillages bidimensionnels curvilignes (équations elliptiques et méthode variationnelle) sont étudiées et comparées. Celle de Thompson est retenue parce qu'elle s'avère plus robuste et rapide, une fois associée à une résolution multigrille non linéaire. Le code curviligne développé est basé sur les équations d'Euler pour un gaz parfait. Une méthode de type volumes finis est utilisée pour la discrétisation spatiale. Le schéma de transport est basé sur le principe des flux corrigés (FCT) généralisé au multidimensionnel. Cet algorithme est conçu pour assurer la monotonie et la positivité des variables conservatives transportées. Une discrétisation temporelle totalement explicite d'ordre 2 est obtenue par une méthode de type Runge-Kutta. L'influence des différents schémas utilisés avant la limitation est étudiée sur le cas de l'impact d'une onde de choc sur un obstacle. La solution numérique obtenue est comparée à la solution analytique stationnaire dans le cas d'un écoulement supersonique sur une triple rampe de compression. Des comparaisons avec des striscopies expérimentales sont effectuées pour l'impact d'une onde de choc sur un cylindre. Deux cas transsoniques, l'un stationnaire (NACA0012) et l'autre instationnaire (cylindre), sont ensuite présentés. Enfin des tests d'adaptation du maillage sur le cas d'un dièdre sont réalisés. Un important effort de vectorisation permet des performances de plus de 100 MFLOPS sur un CRAY XMP 116.
Development of an unsteady compressible finite volume code with minimum numerical diffusivity
Pas de résumé disponible.