Équations fonctionnelles de Mahler et applications aux suites p-régulières

par Bernard Randé

Thèse de doctorat en Mathématiques et informatique

Sous la direction de Jean-Paul Allouche.

Soutenue en 1992

à Bordeaux 1 .


  • Résumé

    Le concept de suite p-régulière, introduit par Allouche et Shallit, généralise celui de suite p-automatique. La série génératrice d'une telle suite est considérée, tantôt comme une série formelle, tantôt comme une fonction holomorphe (dans le cas complexe) ; elle vérifie une équation fonctionnelle linéaire, dite de Mahler. Ce travail étudie ces équations fonctionnelles de façon générale, pour les appliquer au cas particulier des suites p-régulières. Le cadre formel est celui des chapitres 1, 2 et 3. On y étudie certaines structures mahlériennes. Le chapitre 4 montre la transcendance des solutions non rationnelles, par l'étude de leurs singularités. On étend ainsi un résultat bien connu dans le cas automatique. Le chapitre 5, répondant à une question posée par Rubel, montre que, dans un cas, les solutions non rationnelles sont différentiellement transcendantes (ou hypertranscendantes). Le chapitre 7, reprenant des méthodes bien connues, s'appuie sur le chapitre 4 pour établir la transcendance des valeurs prises, s'intéressant ainsi à une question posée par Allouche et Shallit. Le chapitre 8 montre un résultat très partiel en direction d'une conjecture de Loxton et van der Poorten. Le chapitre 6 esquisse une étude dans le cas non linéaire.

  • Titre traduit

    Mahler functional equations and applications to p-regular sequences


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. ([74] p.)

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Disponible pour le PEB
  • Cote : FT 92.B-834
  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Non disponible pour le PEB
  • Cote : FTR 92.B-834

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1992-RAN
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.