Thèse soutenue

Déconvolution aveugle
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Elisabeth Gassiat
Direction : Didier Dacunha-Castelle
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 1989
Etablissement(s) : Paris 11
Partenaire(s) de recherche : autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)

Résumé

FR  |  
EN

Considérant une série x formée de variables aléatoires indépendamment identiquement distribuées, et le signal Y obtenu lorsque l'on filtre X par un système linéaire s, nous étudions l'estimation de s sur la base des observations y dans le cadre semi-paramétrique suivant : la loi des x est inconnue et non gaussienne, et s possède un inverse de convolution de longueur finie fixée. Aucune hypothèse n'est faite sur la phase du système, c'est à-dire sur la causalité ou non causalité de s. Nous proposons une estimation par maximum d'objectif. L'estimateur ainsi obtenu est consistant et asymptotiquement gaussien, ce résultat restant valable quelle que soit la dimension de l'espace d'indexation des séries considérées. Nous étudions l'efficacité asymptotique de la méthode et, dans le cas causal, nous la comparons aux méthodes usuelles de moindres carrés. Interprétant notre signal sortant comme un champ autorégressif, nous proposons une méthode consistante d'identification de l'ordre du modèle. Nous étudions divers types de robustesse des estimateurs : robustesse à une sous-paramétrisation, robustesse à l'addition d'un bruit sur l'observation. Nous nous intéressons enfin au cas où la loi de x a des moments infinis, et montrons que, pour des objectifs "cumulants standardisés" et sous certaines hypothèses vérifiées en particulier pour les lois dans les domaines d'attraction de lois stables, l'estimateur obtenu reste consistant, et sa vitesse de convergence, dans le cas causal, est meilleur que pour des lois de variance finie.