Synthèse électrochimique et caractérisation de nanoparticules d'hydroxypatite, mise en charge de matrice extracellulaire d'hydrogel et leurs caractérisations mécanique et biologique.

par Sylvie Beaufils

Projet de thèse en Sciences

Sous la direction de Pierre Millet.

Thèses en préparation à Reims en cotutelle avec non , dans le cadre de Ecole doctorale Sciences, technologies, santé (Reims, Marne) , en partenariat avec (LISM) Laboratoire d'Ingénierie et Sciences des Matériaux (laboratoire) et de Equipe Electrochimie-LISM (equipe de recherche) depuis le 10-01-2012 .


  • Résumé

    Dans le but de réduire la morbidité et la durée d'hospitalisation, la médecine régénérative progresse de nos jours vers le développement de techniques chirurgicales moins invasives. Cette recherche en chirurgie mini-invasive a motivé le développement de matrices injectables pour l'ingénierie tissulaire osseuse. Ces matrices doivent aussi être capables de durcir une fois injectées in situ, acquérir la forme souhaitée ainsi que des propriétés mécaniques compatibles avec le tissu hôte qu'elles doivent réparer. De nombreux hydrogels sont déjà employés pour cette application mais aucun ne remplit complètement les propriétés requises. L'objectif de cette thèse est de développer de nouveaux substituts de greffe osseuse : des hydrogels à base de biopolymères associés à des cellules osseuses pour obtenir des greffons mi-synthétiques, mi-biologiques. Des nanoparticules de phosphates de calcium sont ajoutées pour améliorer les propriétés biologiques et mécaniques des hydrogels. L'hydroxyapatite, le phosphate de calcium choisi, est attrayante à cause de ses similitudes chimiques et structurales au constituent minéral de l'os humain. Le but de ce travail est de synthétiser des nanofils d'hydroxyapatite par la méthode template et des nanopoudres d'hydroxyapatite de taille contrôlée par sonoélectrochimie pulsée déphasée. Ensuite pour améliorer les propriétés intrinsèques des structures 3D, ces nanoparticules de phosphates de calcium seront insérées dans des matrices d'hydrogel synthétisées par le laboratoire d'ingénierie ostéo-articulaire et dentaire (LIOAD) de Nantes. Des mesures de coefficient de diffusion seront suivies par des tests de cytotoxicité et de biocompatibilité de ces matériaux. Des études en sous-cutané et après implantation en milieu osseux suivront.

  • Titre traduit

    Electrochemical synthesis and characterization of hydroxyapatite nanoparticles, addition to extracellular matrix of hydrogel and their mechanical and biological characterizations.


  • Résumé

    In order to reduce morbidity and hospital stay, regenerative medicine is nowadays moving towards the development of less invasive surgical techniques. This search for a minimally invasive surgery has motivated the development of injectable matrices for bone tissue engineering. These matrices must also be able to harden in situ once injected, acquire the desired shape and mechanical properties compatible with the host tissue it intends to repair. Many hydrogels are already used for this application but none fully meets the required properties. The objective of this thesis is to develop new bone graft substitutes: hydrogels based on biopolymers associated with bone cells to achieve half synthetic and half biological grafts. Nanoparticles of calcium phosphates are added to improve the biological and mechanical properties of hydrogels. Hydroxyapatite, calcium phosphate chosen, has attracted much attention because of its chemical and structural similarity to the mineral constituent of human bone. The aim of this work is to synthesize firstly hydroxyapatite nanowires by the template method and secondly size controlled hydroxyapatite nanopowders by out-of-phase pulsed sonoelectrochemistry. Thirdly to improve the intrinsic properties of these three-dimensional structures, those nanoparticles of calcium phosphates will be added in the matrices of hydrogel synthesized by the LIOAD. Measurements of diffusion coefficient will be followed by testing cytotoxicity and biocompatibility of those materials. A subcutaneous study and bone model study will follow.