Thèse en cours

Apprentissage continu en ligne pour la détection 3D des usagers de la route en conduite autonome

FR  |  
EN

Accès à la thèse

Triangle exclamation pleinLa soutenance a eu lieu en 2023. Le document qui a justifié du diplôme est en cours de traitement par l'établissement de soutenance.
Auteur / Autrice : Rui Yang
Direction : Yassine RuichekZhi Yan
Type : Projet de thèse
Discipline(s) : Sciences pour l'Ingénieur
Date : Soutenance en 2023
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : SPIM - Sciences Physiques pour l'Ingénieur et Microtechniques
Partenaire(s) de recherche : Laboratoire : Connaissance et Intelligence Artificielle Distribuées
Jury : Président / Présidente : Hichem Snoussi
Examinateurs / Examinatrices : Yassine Ruichek, TomᚠKRAJNíK, Désiré Sidibe, Zhi Yan
Rapporteurs / Rapporteuses : TomᚠKRAJNíK, Désiré Sidibe

Résumé

FR  |  
EN

La conduite autonome a connu des progrès remarquables au cours des dernières décennies, et la perception machine se présente comme un enjeu fondamental crucial, englobant la détection et le suivi des participants à la circulation tels que les véhicules, les piétons et les cyclistes. Bien que la détection d'objets basée sur la vision ait réalisé des progrès significatifs grâce aux techniques d'apprentissage profond, des défis subsistent dans la détection en 3D. Tout d'abord, les capteurs non visuels, tels que le LiDAR 3D, démontrent des avantages inégalés en matière de détection précise et d'adaptabilité aux conditions d'éclairage variables. Cependant, la complexité liée à la manipulation des données de nuages de points, qui peuvent être difficiles à interpréter, associée au coût élevé de l'annotation manuelle, posent des défis majeurs dans l'utilisation du LiDAR 3D. Deuxièmement, des préoccupations découlent du manque d'interprétabilité des modèles d'apprentissage profond, associée à leur forte dépendance à des données d'entraînement étendues, ce qui nécessite souvent une rétroaction coûteuse pour obtenir une performance acceptable lors de l'adaptation à de nouveaux environnements. Cette thèse aborde ces défis selon trois principaux axes : Génération d'échantillons, Préservation des connaissances et Évitement de l'oubli catastrophique. Nous introduisons le concept d'Apprentissage Continu en Ligne et proposons un cadre général. Ce cadre permet aux modèles de se mettre à jour en temps réel, préservant les connaissances plutôt que les données brutes, et atténuant efficacement la dégradation des performances causée par l'oubli. Les principaux travaux de cette thèse comprennent les trois contributions suivance : 1) Génération d'échantillons : Pour résoudre le problème des nuages de points clairsemés générés par un LiDAR 3D et de l'annotation manuelle laborieuse, nous tirons parti des avantages des données multi-capteurs et utilisons un cadre efficace d'apprentissage en ligne par transfert. Ce cadre transfère efficacement les capacités matures de détection basée sur des images aux détecteurs basés sur le LiDAR 3D. Un aspect innovant est le processus d'apprentissage par utilisation, réalisé grâce à la détection en boucle fermée. Une nouvelle stratégie de fusion d'informations est proposée pour combiner les corrélations spatio-temporelles, améliorant l'efficacité du transfert de connaissances. 2) Préservation des connaissances : L'Apprentissage en Ligne est introduit pour assurer la préservation des connaissances sans conserver les données d'entraînement. Un modèle amélioré de Forêt Aléatoire (Random Forest) en Ligne est intégré, permettant un entrainement rapide du modèle avec des ressources informatiques limitées et un déploiement immédiat. Les paramètres du modèle Forêt Aléatoire en Ligne sont partagés dynamiquement tout au long du processus d’entrainement pour répondre à la distribution inconnue des données. L'exploration des structures d'arbres Forêt Aléatoire en Ligne garantit l'indépendance du processus d’entrainement, renforçant la capacité du modèle à capturer des schémas et des variations complexes. 3) Évitement de l'oubli catastrophique : Pour faire face au problème inévitable de l'oubli dans le cadre d'apprentissage en ligne lors d'un déploiement à long terme, nous proposons le cadre de l'Apprentissage en Ligne à Long-court Terme (ALLCT). L'ALLCT combine de multiples apprenants à court terme basés sur l'apprentissage en ensemble avec un contrôleur à long terme doté d'un mécanisme de décision probabiliste. Ce cadre assure une maintenance efficace des connaissances et s'adapte aux changements lors d'un déploiement à long terme, sans faire d'hypothèses sur les types de modèles et la continuité des données. Les évaluations croisées de jeux de données sur des tâches telles que la détection 3D de participants à la circulation routière démontrent l'efficacité de l'ALLCT dans l'évitement de l'oubli.