Thèse soutenue

Recherche et optimisation de solutions technologiques de protection balistique par corrélation expérience-simulation

FR  |  
EN
Auteur / Autrice : Yohan Cosquer
Direction : Patrice LongèreOlivier Pantalé
Type : Thèse de doctorat
Discipline(s) : Génie mécanique, mécanique des matériaux
Date : Soutenance le 16/12/2021
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut Clément Ader (Toulouse ; 2009-....)
Equipe de recherche : Institut supérieur de l'aéronautique et de l'espace (Toulouse, Haute-Garonne). Département mécanique des structures et matériaux
Jury : Président / Présidente : Eric Markiewicz
Examinateurs / Examinatrices : Patrice Longère, Eric Markiewicz, Nadia Bahlouli, Jean-Philippe Ponthot, Claude Gailhac
Rapporteurs / Rapporteuses : Nadia Bahlouli, Jean-Philippe Ponthot

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les protections de véhicules terrestres contre les impacts balistiques ont longtemps été issues d’une évolution incrémentale basée sur des approches empiriques. Une conception basée sur une optimisation numérique permet de réduire le nombre des essais et les coûts afférents tout en faisant varier librement les matériaux, menaces et contraintes (environnementales par exemple). Une méthodologie de corrélation expérience-simulation couplant un code de calcul par éléments finis à un module d’optimisation est ainsi proposée. La méthodologie en question inclut trois étapes : (i) la calibration et la vérification d’un modèle numérique (à prendre au sens large), (ii) la validation du modèle, et (iii) la recherche d'une configuration optimale de protection, en l'occurrence ici un empilement multimatériaux.Une importante campagne de tirs balistiques a été conduite au moyen de la plateforme d’impact STIMPACT de l’ICA et d’un banc d’épreuve pour étudier la réponse de protections balistiques types (à base de plaques en acier et alliages, de carreaux de céramiques, de panneaux de polymères renforcés) en faisant notamment varier le type de projectile (matériau, géométrie), la vitesse d’impact (de 100 à 830 m/s), et la structure d’empilements multimatériaux. Des informations quantitatives ont été obtenues en termes de vitesses limites de protection (VLP) et de courbes vitesse résiduelle en fonction de la vitesse incidente, et des informations qualitatives en termes de modes de ruine des différents éléments constituant la protection. Ces essais ont permis de tirer des tendances et d'alimenter la base de données utilisée pour la partie corrélation expérience-simulation. Les simulations numériques ont été menées au moyen du code commercial de calcul par éléments finis Abaqus/Explicit. Le comportement des différents matériaux est décrit par des modèles spécifiques ingénieurs rendant compte des effets de la déformation et de la vitesse de déformation, de l'endommagement et de la température, et dont les constantes sont selon le cas issues de la littérature ou déterminées dans l'étape de calibration/vérification conduite sur des configurations simples à modérément complexes. Une fois validé sur des configurations complexes, le modèle est intégré dans une boucle d’optimisation via le module ISIGHT afin de déterminer un jeu de paramètres de conception optimal qui minimise la masse d’un empilement multimatériaux tout en assurant sa fonction de protection balistique. La comparaison des premières optimisations numériques à des essais réels est encourageante quant à la capacité prédictive du modèle.