Modification de réseaux orientés de nanotubes de TiO2 par des MOF. Application à la photo-dissociation de l'eay et la photo-réduction du CO2.

par Sheng mu You

Projet de thèse en Chimie

Sous la direction de Pierre Millet et de Reuy-an Doong.

Thèses en préparation à Paris Saclay en cotutelle avec National Chiao Tung University , dans le cadre de Sciences Chimiques : Molécules, Matériaux, Instrumentation et Biosystèmes , en partenariat avec Institut de Chimie Moléculaire et des Matériaux d'Orsay (laboratoire) et de Université Paris-Sud (établissement de préparation de la thèse) depuis le 01-10-2018 .


  • Résumé

    L'objectif de cette thèse est de synthétiser des réseaux organisés de nanotubes de TiO2 et de les tapisser en surface par des nanoparticules de MOF à propriétés photo-électrochimiques. Par un choix judicieux de la nature et la structure des MOF utilisés, les applications visées concernent la photo-dissociation de l'eau et la photo-réduction du CO2 (cf description détaillée en anglais).

  • Titre traduit

    Fabrication of metal-organic framework modified TiO2 nanotube array for enhanced electrochemical water splitting and carbon dioxide reduction


  • Résumé

    Fossil fuel reserves are dwindling and their unrestricted use has led to incontrovertible changes in the Earth's surface temperature and climate. Solar fuel generation through water splitting and CO2 reduction is an ideal route to provide the renewable energy sources and mitigate global warming. Metal organic frameworks (MOFs) have recently debuted as participants and solid supports in catalytic water splitting. Their porosity and structural versatility offer a tantalizing consolidation of the components needed for solar light harvesting and water splitting. Along with the band gap control by linker functionalization and doping, MOFs have been considered as modification of porous material because of their high surface area and reliable stability in different catalytic application. Moreover, TiO2 nanotube array (TNTA) for hydrogen evolution have attracted high attention owing to the internal surface area and ordered construction. Fabrication of MOF@TNTA synthesized through self-assembly precipitation method that deposited organic ligand onto TNTA and connected with metal ions by precipitation can provide abundant electrocatalytically active sites, resulting in the enhancement of excellent electrochemical durability at low operational voltage. However, the application of MOF/TNTA for the water splitting and CO2 recovery has received less attention. Since the hybrids are possessed advantages of both individual component including large surface area, abundant reactive site, suitable band gap and excellent electrochemical activity, we expect that the MOF/TNTA can serve as superior anode for hydrogen production. In addition, the excellent gas capture by microspores of MOF and suitable band gap of TNTA for CH4/CO2, CH3OH/CO2 and H+/H2 conversion makes MOF/TNTA nanocomposite an excellent photoeletrochemical material for carbon dioxide reduction through the (photo-) electrochemical reactions.