DÉVELOPPEMENT DE FILMS MINCES À BASE DE NANOPARTICULES DIÉLECTRIQUES ET OPTIMISATION DES CONDITIONS DE DÉPÔT POUR FABRIQUER DES CONDENSATEURS DE DÉCOUPLAGE UTILISÉS DANS DES ASSEMBLAGES À HAUTE DENSITÉ DE MODULES ÉLECTRONIQUES

par Emmanuel Tetsi

Thèse de doctorat en Electronique

Sous la direction de Laurent Bechou et de Dominique Drouin.

Thèses en préparation à Bordeaux en cotutelle avec l'Université de Sherbrooke , dans le cadre de École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde) , en partenariat avec Laboratoire de l'intégration du matériau au système (Talence, Gironde) (laboratoire) .


  • Résumé

    Dans le cadre de l'intégration tridimensionnelle (3D) associée à l'utilisation d'un nombre croissant de circuits intégrés (CIs), le besoin en condensateurs de découplage à forte densité de capacité (≥ 1 μF.cm-2), capables d'opérer sur une gamme de fréquences de plus en plus étendue, est crucial afin de limiter les fluctuations de tension d'alimentation au niveau des CIs. Le principal frein au développement de ces condensateurs réside dans l'obtention de couches minces (≤ 100 nm) à partir de matériaux ayant une forte permittivité relative (ε_r > 200 à 1 GHz), des technologies compatibles avec une intégration à grande échelle, et peu coûteux. L'approche proposée dans cette thèse s'appuie d'une part, sur la possibilité de synthétiser des nanoparticules diélectriques à base de Ba0.6Sr0.4TiO3 [BST] (Ø = 16 ± 2 nm, ε_r = 260 à 1 kHz) - obtenues en milieux fluides supercritiques - comme matériau diélectrique et d'autre part, sur la pulvérisation de jets ou spray coating comme technologie de dépôt en couches minces. Dans un premier temps, les nanoparticules de BST ont été synthétisées et fonctionnalisées par l'acide 3-aminopropylphosphonique (APA), dans le but de les disperser dans un solvant et d'obtenir des suspensions colloïdales stables. Les ligands ont aussi pour fonction d'améliorer la tenue mécanique des films (auto-assemblage) sur le substrat de cuivre (Cu). La variation de paramètres liés à la solution à base des nanoparticules (concentration, durée de dispersion mécanique) et à la technique de dépôt (température du substrat, débit), ont permis d'optimiser les conditions pour obtenir des films uniformes à base de nanoparticules fonctionnalisées (BST-APA). Des films de 200 ± 50 nm d'épaisseur ont ainsi pu être obtenus. Après dépôt de plots d'aluminium (Al) sur les films à base de BST-APA et utilisés comme électrode supérieure, les caractéristiques capacité-tension (C-V) et courant-tension (I-V) des condensateurs de structure Al/BST-APA/Cu ont permis d'extraire une densité de capacité élevée (0.71 μF.cm-2) et une densité de courant de fuite (25 μA.cm-2) mesurées à 1 V. Les résultats obtenus au cours de cette thèse montent que la pulvérisation de jets est une alternative aux procédés coûteux reportés (ablation laser, pulvérisation) dans l'état de l'art, pour la fabrication de condensateurs de hautes performances. Mots clés : Condensateurs MIM, couches minces, fluides supercritiques, diélectriques, Ba0.6Sr0.4TiO3, pulvérisation de jets, nanofabrication.

  • Titre traduit

    Development of thin films based on dielectric nanoparticles and optimisation of the deposition conditions for the fabrication of decoupling capacitors used in high density electronic modules assembling


  • Résumé

    Within the three-dimensional (3D) integration associated with the use of an increasing amount of integrated circuits (ICs), there is strong need of high capacitance density (≥ 1 μF.cm-2) decoupling capacitors, able to operate on large frequency bandwidth, in order to reduce the noise that can compromise the signal integrity in ICs. The main challenge of these capacitors relies on the deposition of thin films (≤ 100 nm) using innovative materials with high relative permittivity (ε_r > 200 à 1 GHz) and «low cost» technologies compatible with large scale integration. On one hand, the proposed approach in this thesis benefits from the possibility of synthetizing – by the supercritical fluid technology – and using Ba0.6Sr0.4TiO3 (BST) nanoparticles (Ø = 16 ± 2 nm, ε_r = 260 at1 kHz) as dielectric material and on the other hand, from the use of spray coating as technique for the deposition of these materials as thin films. First of all, the BST nanoparticles synthesized are functionalized with specific ligands (3-aminopropylphosphonic acid, APA), in order to obtain colloidal suspensions composed by aggregates with size (Ø < 100 nm) showing few fluctuations during two months. The other function of ligands is to improve the adhesion of the deposited films (self-assembling) on the copper (Cu) substrate. Different solvent are studied for the preparation of the solutions : N-méthyl-2-pyrrolidone (NMP), water, methanol and ethanol. The variation of different parameters related to the solution and the deposition technique helped us to define the optimal conditions leading to different thickness of film (200 – 1000 nm) based on pristine (BST) and functionalized nanoparticles (BST-APA). Using ethanol instead of NMP as solvent, enabled us to prevent de formation of a copper oxide layer and organic residues. After deposition of aluminum pads (Al) on BST or BST-APA films and used as top electrode, the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of capacitors with metal-insulator-metal (MIM) structure enabled us to achieve high capacitance density (~ 0.7 μF.cm-2) and low leakage current (~ 25 μA.cm-2) at 1 V. Keywords: MIM capacitors, thin films, supercritical fluids, Ba0.6Sr0.4TiO3, spray coating, nanofabrication in cleanroom.