Physiopathologie moléculaire et cellulaire des anomalies du développement du cortex cérébral - Le Syndrome d'Aicardi.

par Mara Cavallin

Thèse de doctorat en Genetique

Sous la direction de Nadia Bahi.

Thèses en préparation à Sorbonne Paris Cité , dans le cadre de École doctorale Bio Sorbonne Paris Cité .


  • Résumé

    Les malformations du cortex cérébral (MDC) représentent une cause importante de handicap et d'épilepsie pharmaco-résistante. Le séquençage à haut débit a permis une amélioration considérable de l'identification des bases moléculaires des MDC non syndromiques. Toutefois, certaines formes, notamment les MDC complexes, demeurent inexpliquées. Mon projet de thèse a pour objectif de progresser dans la compréhension des MDC complexes en utilisant deux modèles : les microlissencéphalies (MLIS) et le syndrome d'Aicardi (AIC), une forme syndromique particulière associant des malformations de l'oeil et du cerveau uniquement rapporté chez les filles. L'étude par séquençage d'exome en trios de 16 familles MLIS m'a permis d'identifier et de caractériser un nouveau gène, WDR81, impliqué dans le cycle cellulaire. Par la même stratégie, j'ai pu identifier un variant homozygote pathogène dans TLE1, un partenaire majeur de FOXG1 dans la balance prolifération/différenciation de progéniteurs neuronaux, dans une famille consanguine de microcéphalie postnatale dont le phénotype est proche du syndrome FOXG1. En parallèle, mes travaux ont permis de préciser les spectres phénotypiques associés à RTTN, EPG5, COL4A1, COL4A2, TBR1, KIF5C, KIF2A et FOXG1. La deuxième partie de mon projet avait pour objet l'identification des bases moléculaires du syndrome d'Aicardi à partir d'une cohorte internationale de 19 patientes. Après avoir exclu un biais d'inactivation du chromosome X et la présence de microremaniements chromosomiques, j'ai réalisé un séquençage d'exome en trio. Aucun variant récurrent n'a été retrouvé dans les séquences codantes. Dans un second temps, j'ai testé une approche combinant les données du séquençage de génome et l'analyse du transcriptome (RNA-Seq) sur fibroblastes, me permettant d'identifier des transcrits dérégulés qui étaient impliqués dans le développement du cerveau et de l'oeil. J'ai comparé les résultats de cette analyse avec ceux de l'analyse du génome dans le but d'identifier des variants dans ces gènes candidats. En conclusion, mon travail de thèse a permis d'améliorer la connaissance des bases moléculaires des MDC complexes et d'ouvrir des perspectives de nouveaux mécanismes tels que ceux engageant les gènes WDR81 et EPG5, et le rôle des endosomes et de l'autophagie dans les MDC, et aussi TLE1 comme nouvelle cause de microcéphalies postnatales. Mes travaux ont également permis de générer une collection de données de séquençage haut débit (WES, WGS et RNA-Seq) qui seront mises en commun dans le cadre d'un consortium international afin de développer des nouvelles stratégies d'analyse en particulier pour les séquences non codantes. Cette approche permettra également d'ouvrir la voie vers la compréhension des mécanismes cellulaires impliqués dans la formation du cerveau et de l' oeil.

  • Titre traduit

    Molecular and cellular pathophysiology of cortical development malformation - the Aicardi Syndrome


  • Résumé

    Malformations of cortical development (MCD) are a major cause of intellectual disability and drug-resistant epilepsy. Next Generation Sequencing (NGS) has considerably improved the identification of the molecular basis of non-syndromic MCD. However, certain forms, including complex MCD, remain unexplained. My PhD project aimed to improve the understanding of complex MCD using two disorders: Microlissencephaly (MLIS) and Aicardi Syndrome (AIC), the latter associating brain and eye malformations and only reported in girls. Trio Whole Exome Sequencing (WES) performed in 16 MLIS families allowed me to identify and functionally characterize a new MLIS gene, WDR81, in which mutations lead to cell cycle alteration. Moreover, using the same strategy, I was able to identify a pathogenic homozygous variant in TLE1 in a patient from consanguineous family with a postnatal microcephaly, suggestive of a FOXG1-like presentation. Interestingly, TLE1 is a major partner of FOXG1, a gene involved in maintaining the balance between progenitor proliferation and differentiation. In parallel, my work allowed me to redefine the phenotypic spectrum associated with RTTN, EPG5, COL4A1 and COL4A2, TBR1, KIF5C, KIF2A and FOXG1. The second part of my PhD program was aimed at identifying the genetic basis of AIC in an international cohort of 19 patients. After excluding a skewed X chromosome inactivation and the presence of chromosomal rearrangements, I performed WES in trios. The analysis of the data from WES did not allow me to identify any recurrent variants. I therefore tested a new approach combining Whole Genome Sequencing (WGS) and RNA-Sequencing (RNA-Seq) on fibroblast cells. I identified a number of deregulated transcripts implicated in brain and eye development. I compared the results of this analysis with the WGS analysis in order to find variants in these candidate genes. In conclusion, these studies have improved the knowledge of the molecular basis of complex MCD, such as TLE1 in postnatal microcephaly, and revealed the pathogenic mechanisms such as WDR81 in cell cycle progression and EPG5 in endosomes and autophagy. My work has also generated a collection of NGS data (WES, WGS and RNA-Seq) that will be shared in an international consortium to develop new analytical strategies, in particular for the non-coding DNA regions. This novel strategy provides opportunities to improve understanding of the cellular mechanisms involved in brain and eye development.