Etude des lésions médullaires chez la souris et le primate non-humain: l'imagerie par résonance magnétique de diffusion comme outil translationnel.

par Guillaume Saint martin

Thèse de doctorat en Physique

Sous la direction de Christophe Goze-bac et de Florence Perrin.

Thèses en préparation à Montpellier , dans le cadre de I2S - Information, Structures, Systèmes , en partenariat avec L2C - Laboratoire Charles Coulomb (laboratoire) .


  • Résumé

    Les lésions de la moelle épinière (LME) touchent 2.5 à 4 millions de personnes dans le monde (40 000 en France). Les LME induisent des symptômes sensitifs et moteurs conduisant, pour les lésions les plus sévères, à une tétraplégie complète. L'imagerie par résonance magnétique (IRM) est la seule méthode permettant le suivi des patients ayant une lésion de la moelle épinière. Dans cette étude, nous avons développé un suivi IRM in vivo qui permet d'identifier avec précision chez la souris et le primate non-humain la progression d'une lésion médullaire dans différents contextes. L'objectif étant d'utiliser les mêmes techniques chez l'Homme et chez l'animal. En particulier, nous avons montré que les souris CX3CR1+/eGFP et Aldh1l1-EGFP qui expriment respectivement une protéine fluorescente (eGFP) dans les microglies et les astrocytes présentent une récupération fonctionnelle différente, les CX3CR1 +/eGFP récupérant mieux. Afin d'identifier si ces récupérations sont associées à une évolution lésionnelle différentielle, nous avons effectué un suivi longitudinal en utilisant l'IRM pondérée T2 in vivo. Nous avons aussi réalisé des analyses approfondies des tissus de la moelle épinière en utilisant deux techniques d'IRM ex vivo (IRM en pondération T2 et en diffusion) ainsi qu'une analyse histologique détaillée. Enfin, nous avons effectué un suivi longitudinal de l'évolution de la lésion sur un groupe supplémentaire de souris en utilisant l'IRM pondérée en diffusion in vivo. Les analyses IRM pondérée en T2 ex vivo, in vivo et l'histologie n'ont révélé aucune différence au niveau lésionnel entre les deux souches de souris. Au contraire, les IRM pondérées diffusion en ex vivo et in vivo ont permis l'identification d'une plus faible surface lésionnelle à l'épicentre chez les souris CX3CR1+/eGFP, la souche ayant une meilleure récupération fonctionnelle. Nous avons ensuite évalué l'impact d'une stratégie thérapeutique consistant en la modulation de la cicatrice gliale, principale limitation de la repousse axonale après une lésion médullaire. Cette modulation, consiste en une déplétion pharmacologique transitoire de la prolifération des microglies et son évaluation a été réalisée par un suivi en imagerie puis en histologie des animaux traités ou non. Le suivi IRM n'a pas permis d‘identifier une différence entre les animaux traités et non-traités en terme d'extension et de volume lésionnel. Par contre, nous avons observé une différence dans le coefficient de diffusion apparent parallèle (ADC//, gradient de diffusion appliqué dans la direction des axones) entre les deux groupes, attestant de l'effet du traitement sur l'organisation cellulaire après une LME. Enfin, nous avons utilisé l'IRM in et ex vivo pour caractériser un nouveau modèle de lésion de la moelle épinière sur un primate non-humain. Nous avons démontré qu'une hémisection latérale de la moelle épinière chez Microcebus murinus est un modèle reproductible de LME chez le primate non-humain qui pourrait être utilisé pour promouvoir une transition vers la recherche translationnelle. Nous avons donc caractérisé l'utilisation de l'IRM in vivo et ex vivo dans la mise en place d'une comparaison entre deux souches de souris présentant une récupération différente après une LME. De même, le suivi in et ex vivo chez une autre espèce, Microcebus murinus, un primate non-humain, a permis la caractérisation d'un nouveau modèle de LME. Enfin, l'IRM a permis de détecter une différence de coefficient de diffusion provoquée par la déplétion spécifique et transitoire des microglies dans un contexte de LME.

  • Titre traduit

    Tissue alterations study in spinal cord injured rodent and non-human primate: diffusion magnetic resonance imaging as translational tool.


  • Résumé

    Spinal cord injuries (SCI) affect 2.5 to 4 million people worldwide (40,000 in France). SCI induce sensory and motor symptoms leading to complete tetraplegia for the most severe lesions. Magnetic resonance imaging (MRI) is the only method used to follow patients with a spinal cord injury. In this study, we have developed an in vivo MRI follow-up that accurately assess the progression of a lesion of the spinal cord in mice and non-human primates. The objective being to use the same techniques in humans and animals. In particular, we showed that the CX3CR1+/eGFP and Aldh1l1-EGFP mice, that respectively express a fluorescent protein (eGFP) in microglia and astrocytes exhibit different functional recovery, and a better one is observed in CX3CR1+/eGFP mice. In order to identify whether these recoveries are associated with a differential evolution of the lesion, we performed a longitudinal follow-up using T2-weighted in vivo MRI. We also performed additional analyzes of spinal cord tissues using two ex vivo MRI (T2 and diffusion weighted MRI) as well as detailed histological analysis. Finally, we implemented our analysis with a longitudinal in vivo diffusion-weighted MRI follow-up of lesion evolution on an additional group of mice. Ex and in vivo T2-weighted MRI analyzes as well as histological assessment revealed no difference in lesion between the two mouse strains. Conversely, ex and in vivo diffusion-weighted MRI allowed identifying a lower lesion area at the epicenter in CX3CR1+/eGFP mice, the strain that recovers better. We then evaluated the impact of a therapeutic strategy based on the modulation of the glial scar that plays a major role on the absence of spontaneous axonal regrowth after spinal cord injury. This modulation consists in a transient pharmacological depletion of microglia proliferation and its evaluation was carried out by an imaging and histological follow-up of treated and un-treated animals. MRI monitoring did not permit to identify a difference in lesion extension and volume between groups. However, we observed a difference in parallel apparent diffusion coefficient (ADC//, diffusion gradient applied in axons direction) detected between the two groups, attesting of an effect of the treatment on the cellular organization after an SCI. Finally, we used in and ex vivo MRI to characterize a new model of spinal cord injury in a non-human primate. We demonstrated that a lateral hemisection of the spinal cord in Microcebus murinus is a reproducible non-human primate model of SCI that could be further used to promote translational research. We therefore characterized the use of in and ex vivo MRI to compare two mouse strains with different recovery after SCI. Similarly, the in and ex vivo follow-up of another species, Microcebus murinus, a nonhuman primate, allowed the characterization of a new SCI model. Finally, using MRI we detected a difference in parallel diffusion coefficient that was induced by the specific and transient depletion of microglia in a SCI context.