Classification précoce de séquences temporelles par de l'apprentissage par renforcement profond

par Coralie Martinez

Thèse de doctorat en Signal image parole telecoms

Sous la direction de Michèle Rombaut.


  • Résumé

    La classification précoce (CP) de séquences temporelles est un sujet de recherche récent dans le domaine de l'analyse des données séquentielles. Le problème consiste à attribuer une étiquette à des données qui sont collectées séquentiellement avec de nouvelles mesures arrivant au cours du temps. La prédiction d'une étiquette doit être faite en utilisant le moins de mesures possible dans la séquence. Le problème de CP a une importance capitale pour de nombreuses applications, allant du contrôle des processus à la détection de fraude. Il est particulièrement intéressant pour les applications qui cherchent à minimiser les coûts d'acquisition des mesures, ou qui cherchent une prédiction rapide des étiquettes afin de pouvoir entreprendre des actions rapides. C'est par exemple le cas dans le domaine de la santé, où il est nécessaire de fournir dès que possible un diagnostic médical à partir de la séquence d'observations médicales collectées au fil du temps. Un autre exemple est la maintenance prédictive où le but est d'anticiper la panne d'une machine à partir des signaux de ses capteurs. Dans ce travail de doctorat, nous avons développé une nouvelle approche pour ce problème, basée sur la formulation d'un problème de prise de décision séquentielle. Nous considérons qu'un modèle de CP doit décider entre classer une séquence incomplète ou retarder la prédiction afin de collecter des mesures supplémentaires. Plus précisément, nous décrivons ce problème comme un processus de décision de Markov partiellement observable noté EC-POMDP. L'approche consiste à entraîner un agent pour la CP à partir d'apprentissage par renforcement profond dans un environnement caractérisé par le EC-POMDP. La principale motivation de cette approche est de proposer un modèle capable d'effectuer la CP de bout en bout, en étant capable d'apprendre simultanément les caractéristiques optimales dans les séquences pour la classification et les décisions stratégiques optimales pour le moment de la prédiction. En outre, la méthode permet de définir l'importance du temps par rapport à la précision de la prédiction dans la définition des récompenses, et ce en fonction de l'application et de sa volonté de faire un compromis. Afin de résoudre le EC-POMDP et de modéliser la politique de l'agent, nous avons appliqué un algorithme existant, le Double Deep-Q-Network, dont le principe général est de mettre à jour la politique de l'agent pendant des épisodes d'entraînement, à partir d'expériences passées stockées dans une mémoire de rejeu. Nous avons montré que l'application de l'algorithme original au problème de CP entraînait des problèmes de mémoire déséquilibrée, susceptibles de détériorer l'entrainement de l'agent. Par conséquent, pour faire face à ces problèmes et permettre un entrainement plus robuste de l'agent, nous avons adapté l'algorithme aux spécificités du EC-POMDP et nous avons introduit des stratégies de gestion de la mémoire et des épisodes. Expérimentalement, nous avons montré que ces contributions amélioraient les performances de l'agent par rapport à l'algorithme d'origine et que nous étions en mesure de former un agent à faire un compromis entre la vitesse et la précision de la classification, individuellement pour chaque séquence. Nous avons également pu former des agents sur des jeux de données publics pour lesquels nous n'avons aucune expertise, ce qui montre que la méthode est applicable à divers domaines. Enfin, nous avons proposé des stratégies pour interpréter, valider ou rejeter les décisions de l'agent. Lors d'expériences, nous avons montré comment ces solutions peuvent aider à mieux comprendre le choix des actions effectuées par l'agent.

  • Titre traduit

    Early classification of temporal sequences with Deep Reinforcement Learning


  • Résumé

    Early classification (EC) of time series is a recent research topic in the field of sequential data analysis. It consists in assigning a label to some data that is sequentially collected with new data points arriving over time, and the prediction of a label has to be made using as few data points as possible in the sequence. The EC problem is of paramount importance for supporting decision makers in many real-world applications, ranging from process control to fraud detection. It is particularly interesting for applications concerned with the costs induced by the acquisition of data points, or for applications which seek for rapid label prediction in order to take early actions. This is for example the case in the field of health, where it is necessary to provide a medical diagnosis as soon as possible from the sequence of medical observations collected over time. Another example is predictive maintenance with the objective to anticipate the breakdown of a machine from its sensor signals. In this doctoral work, we developed a new approach for this problem, based on the formulation of a sequential decision making problem, that is the EC model has to decide between classifying an incomplete sequence or delaying the prediction to collect additional data points. Specifically, we described this problem as a Partially Observable Markov Decision Process noted EC-POMDP. The approach consists in training an EC agent with Deep Reinforcement Learning (DRL) in an environment characterized by the EC-POMDP. The main motivation for this approach was to offer an end-to-end model for EC which is able to simultaneously learn optimal patterns in the sequences for classification and optimal strategic decisions for the time of prediction. Also, the method allows to set the importance of time against accuracy of the classification in the definition of rewards, according to the application and its willingness to make this compromise. In order to solve the EC-POMDP and model the policy of the EC agent, we applied an existing DRL algorithm, the Double Deep-Q-Network algorithm, whose general principle is to update the policy of the agent during training episodes, using a replay memory of past experiences. We showed that the application of the original algorithm to the EC problem lead to imbalanced memory issues which can weaken the training of the agent. Consequently, to cope with those issues and offer a more robust training of the agent, we adapted the algorithm to the EC-POMDP specificities and we introduced strategies of memory management and episode management. In experiments, we showed that these contributions improved the performance of the agent over the original algorithm, and that we were able to train an EC agent which compromised between speed and accuracy, on each sequence individually. We were also able to train EC agents on public datasets for which we have no expertise, showing that the method is applicable to various domains. Finally, we proposed some strategies to interpret the decisions of the agent, validate or reject them. In experiments, we showed how these solutions can help gain insight in the choice of action made by the agent.