Thèse soutenue

Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy

FR  |  
EN
Auteur / Autrice : Ruoci Sun
Direction : Patrick Gérard
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 26/06/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
référent : Université Paris-Saclay. Faculté des sciences d’Orsay (Essonne ; 2020-....)
Jury : Président / Présidente : Sandrine Grellier
Examinateurs / Examinatrices : Erwan Faou, Didier Pilod, Oana Pocovnicu, Frédéric Rousset
Rapporteurs / Rapporteuses : Erwan Faou, Didier Pilod

Résumé

FR  |  
EN

On s'intéresse dans cette thèse à trois modèles d'équations hamiltoniennes dispersives non linéaires : l'équation de Schrödinger cubique défocalisante sur le cercle, filtrée par le projecteur de Szegö, qui enlève tous les modes de Fourier strictement négatifs (NLS--Szegö cubique), l'équation de Schrödinger quintique focalisante filtrée par le projecteur de Szegö sur la droite (NLS--Szegö quintique) et l'équation de Benjamin--Ono (BO) sur la droite. Comme pour les deux modèles précédents, l'équation de BO peut encore s'écrire sous la forme d'une équation de Schrödinger quadratique filtrée par le projecteur de Szegö. Ces trois modèles nous donnent l'occasion d'étudier les propriétés qualitatives de certaines ondes progressives, le phénomène de croissance des normes de Sobolev, le phénomène de diffusion non linéaire et certaines propriétés d'intégrabilité de systèmes dynamiques hamiltoniens. Le but de cette thèse est de comprendre l'influence des opérateurs de Szegö (non locaux) sur les équations de type Schrödinger, et d'adapter les outils liés à l'espace de Hardy sur le cercle et sur la droite. On applique aussi la méthode de forme normale de Birkhoff, l'argument de concentration--compacité, qui est précisé à travers le théorème de d'ecomposition en profils, et la transformée spectrale inverse pour résoudre ces problèmes. Dans le troisième modèle, la théorie de l'intégrabilité permet de faire le lien avec certains aspects algébriques et géométriques.