Etude et intégration d'un circuit analogique, basse consommation et à faible surface d'empreinte, de neurone impulsionnel basé sur l'utilisation du BIMOS en technologie 28 nm FD-SOI

par Thomas Bedecarrats

Thèse de doctorat en Nano electronique et nano technologies

Sous la direction de Philippe Galy et de Claire Fenouillet-beranger.

Thèses en préparation à Grenoble Alpes , dans le cadre de Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS) , en partenariat avec Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'hyperfréquences et de caractérisation (laboratoire) .


  • Résumé

    Avec la fin annoncée de la loi de Moore, les acteurs de la microélectronique cherchent de nouveaux paradigmes sur lesquels s'appuyer pour alimenter les développements futurs de notre société de l'information. En s'inspirant des systèmes nerveux biologiques, l'ingénierie neuromorphique offre des perspectives nouvelles qui révolutionnent d'ores et déjà l'intelligence artificielle. Pour que leurs performances permettent leur généralisation, les processeurs neuronaux se doivent d'intégrer des circuits de neurones les plus petits et les moins énergivores possible afin que les réseaux de neurones artificiels qu'ils implémentent atteignent une taille critique. Dans ce travail, nous montrons qu'il est possible de réduire le nombre de composants nécessaires à la conception d'un circuit analogique de neurone impulsionnel par la fonctionnalisation des courants de génération parasites dans un transistor BIMOS intégré en technologie 28 nm FD-SOI et dimensionné aux tailles minimales autorisées par la technologie. Après une caractérisation systématique des ces courants par des mesures quasi-statiques du FD-SOI BIMOS à température ambiante sous différentes polarisations, une modélisation compacte de ce composant adaptée à partir du modèle CEA-LETI UTSOI est proposée. Le circuit analogique de neurone impulsionnel à fuite, intégration et déclenchement basé sur le BIMOS (« BIMOS-based leaky, integrate-and-fire spiking neuron » : BB-LIF SN) est ensuite décrit. L'influence des différentes dimensions caractéristiques et polarisations de contrôle sur son fonctionnement observée lors des mesures sur des démonstrateurs fabriqués sur silicium est expliquée en détail. Un modèle analytique simple de ses limites de fonctionnement est proposé. La cohérence entre les résultats de mesures, ceux de simulations compactes et les prédictions du modèle analytique simple atteste la pertinence des analyses proposées. Dans sa version la plus aboutie, le BB-LIF SN occupe une surface de 15 µm², consomme environ 2 pJ/spike, fonctionne à des fréquences de déclenchement comprises entre 3 et 75 kHz pour des courant synaptique compris entre 600 pA et 25 nA sous une tension d'alimentation de 3 V.

  • Titre traduit

    Study and integration of a low power and low footprint BIMOS-based analog spiking neuron circuit in 28 nm FD-SOI technology


  • Résumé

    While Moore's law reaches its limits, microelectronics actors are looking for new paradigms to ensure future developments of our information society. Inspired by biologic nervous systems, neuromorphic engineering is providing new perspectives which have already enabled breakthroughs in artificial intelligence. To achieve sufficient performances to allow their spread, neural processors have to integrate neuron circuits as small and as low power(ed) as possible so that artificial neural networks they implement reach a critical size. In this work, we show that it is possible to reduce the number of components necessary to design an analogue spiking neuron circuit thanks to the functionalisation of parasitic generation currents in a BIMOS transistor integrated in 28 nm FD-SOI technology and sized with the minimum dimensions allowed by this technology. After a systematic characterization of the FD-SOI BIMOS currents under several biases through quasi-static measurements at room temperature, a compact model of this component, adapted from the CEA-LETI UTSOI one, is proposed. The BIMOS-based leaky, integrate-and-fire spiking neuron (BB-LIF SN) circuit is described. Influence of the different design and bias parameters on its behaviour observed during measurements performed on a demonstrator fabricated in silicon is explained in detail. A simple analytic model of its operating boundaries is proposed. The coherence between measurement and compact simulation results and predictions coming from the simple analytic model attests to the relevance of the proposed analysis. In its most successful achievement, the BB-LIF SN circuit is 15 µm², consumes around 2 pJ/spike, triggers at a rate between 3 and 75 kHz for 600 pA to 25 nA synaptic currents under a 3 V power supply.