Transport stochastique de neutrons: une approche basée sur les marches aléatoires

par Clélia De Mulatier

Thèse de doctorat en Physique

Sous la direction de Alberto Rosso et de Cheikh Diop.

Thèses en préparation à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Laboratoire de Physique Théorique et Modèles Statistiques (laboratoire) et de Université Paris-Sud (établissement de préparation de la thèse) depuis le 01-10-2012 .


  • Résumé

    L'un des principaux objectifs de la physique des réacteurs nucléaires est de caractériser la répartition aléatoire de la population de neutrons au sein d'un réacteur. Les fluctuations de cette population sont liées à la nature stochastique des intéractions des neutrons avec les noyaux fissiles du milieu : diffusion, capture stérile, ou encore émission de plusieurs neutrons lors de la fission d'un noyau. L'ensemble de ces mécanismes physiques confère une structure aléatoire branchante à la trajectoire des neutrons, alors modélisée par des marches aléatoires. Avec environs 10ˆ8 neutrons par centimètre cube dans un réacteur de type REP à pleine puissance en conditions stationnaires, les grandeurs physiques du système (flux, taux de réaction, énergie déposée) sont, en première approximation, bien représentées par leurs valeurs moyennes respectives. Ces observables physiques moyennes obéissent alors à l'équation de transport linéaire de Boltzmann. Au cours de ma thèse, je me suis penchée sur deux aspects du transport qui ne sont pas décrits par cette équation, et pour lesquels je me suis appuyée sur des outils issus de la théorie des marches aléatoires. Tout d'abord, grâce au formalisme de Feynman-Kac, j'ai étudié les fluctuations statistiques de la population de neutrons, et plus particulièrement le phénomène de « clustering neutronique », qui a été mis en évidence numériquement pour de faibles densités de neutrons (typiquement un réacteur au démarrage). Je me suis ensuite intéressée à différentes propriétés de la statistique d'occupation des neutrons effectuant un transport anormal (càd non-exponentiel). Ce type de transport permet de modéliser le transport dans des matériaux fortement hétérogènes et désordonnés, tel que les réacteurs à lit de boulets. L'un des aspects novateurs de ce travail est la prise en compte de la présence de bords. En effet, bien que les systèmes réels soient de taille finie, la plupart des résultats théoriques pré-existants sur ces thématiques ont été obtenus sur des systèmes de taille infinie.

  • Titre traduit

    A random walk approach to stochastic neutron transport


  • Résumé

    One of the key goals of nuclear reactor physics is to determine the distribution of the neutron population within a reactor core. This population indeed fluctuates due to the stochastic nature of the interactions of the neutrons with the nuclei of the surrounding medium: scattering, emission of neutrons from fission events and capture by nuclear absorption. Due to these physical mechanisms, the stochastic process performed by neutrons is a branching random walk. For most applications, the neutron population considered is very large, and all physical observables related to its behaviour, such as the heat production due to fissions, are well characterised by their average values. Generally, these mean quantities are governed by the classical neutron transport equation, called linear Boltzmann equation. During my PhD, using tools from branching random walks and anomalous diffusion, I have tackled two aspects of neutron transport that cannot be approached by the linear Boltzmann equation. First, thanks to the Feynman-Kac backward formalism, I have characterised the phenomenon of “neutron clustering” that has been highlighted for low-density configuration of neutrons and results from strong fluctuations in space and time of the neutron population. Then, I focused on several properties of anomalous (non-exponential) transport, that can model neutron transport in strongly heterogeneous and disordered media, such as pebble-bed reactors. One of the novel aspects of this work is that problems are treated in the presence of boundaries. Indeed, even though real systems are finite (confined geometries), most of previously existing results were obtained for infinite systems.