Simulation et optimisation énergétique de procédés agroalimentaires dans un logiciel de génie chimique. Modélisation du séchage convectif d'aliments solides et application à une sucrerie de betteraves

par Charlène Lambert

Thèse de doctorat en Génie des procédés

Sous la direction de Francis Courtois et de Hedi Mohamed Romdhana.

Thèses en préparation à Paris Saclay , dans le cadre de École doctorale Agriculture, Alimentation, Biologie, Environnement, Santé (2015-.... ; Paris) , en partenariat avec GENIAL - Ingénierie Procédés Aliments - UMR AGROPARISTECH/INRA (laboratoire) et de AgroParisTech (France) (établissement de préparation de la thèse) depuis le 01-09-2012 .


  • Résumé

    Pour faire face aux réglementations européennes récentes, l'industrie alimentaire a un besoin crucial d'outils informatiques pour simuler l'ensemble de leur usine en vue de réconcilier les données industrielles et d'optimiser la consommation énergétique. De tels logiciels existent dans le domaine du génie chimique. Ils sont toutefois limités à des mélanges de gaz et de liquides dont les propriétés thermophysiques peuvent être correctement prédites par des modèles thermodynamiques. A ce jour, aucun logiciel commercial n'est capable à la fois de simuler un ensemble d'opérations unitaires alimentaires et de calculer les propriétés thermophysiques nécessaires des aliments, en particulier solides. Une première partie de ce doctorat est dédiée au développement d'un modèle de séchage par air chaud d'aliments solides. Ce modèle est en cours d'ajout dans la base de données d'opérations unitaires de ProSimPlus®. Il a été validé à échelle laboratoire dans le cadre du séchage de 4 produits de compositions et de géométries différentes. Son temps de simulation étant nettement supérieur à celui des autres modules de ProSimPlus®, une nouvelle méthode de réduction de modèle de séchage a également été développée. Pour faciliter le travail de caractérisation d'un nouveau produit, une méthode rapide et innovante d'identification de la diffusivité apparente de l'eau par méthode inverse a été développée. Une deuxième partie de ce doctorat porte sur la simulation et l'optimisation énergétique d'une sucrerie de betteraves, réalisée en collaboration avec V.E.R.I. Chacun des ateliers du site a été modélisé ProSimPlus® en utilisant uniquement des modules d'opérations unitaires non spécifiques de l'agroalimentaire. La modélisation a rendu possible la réconciliation des données industrielles et leur représentation avec une incertitude de 1 %. L'optimisation énergétique de la sucrerie a été réalisée en combinant analyses thermique et exergétique. Au cours de cette étude, des solutions techniques ont été proposées, permettant de diminuer significativement l'irréversibilité totale du site, le besoin en utilité froide et le débit de vapeur haute pression alimentant la sucrerie.

  • Titre traduit

    Simulation and energy optimization of food processes using a chemical engineering software. Modeling of the convective drying of solid food materials and application to a sugar beet factory


  • Résumé

    To face recent European regulations, the food industry has a critical need for IT tools to simulate their entire factory to reconcile industrial data and optimize energy consumption. Such software exist in the field of chemical engineering. They are limited to mixtures of gases and liquids whose thermo-physical properties can be correctly predicted by thermodynamic models. To date, no commercial software is able to simulate most food unit operations and calculate the required thermophysical properties of foods, especially solid foods. A first part of this Ph.D. is dedicated to the development of a model of hot air drying of solid food. This model is being added to the ProSimPlus® unit operation module database. It has been validated in the laboratory scale for the drying of 4 products of different compositions and geometries. Its simulation time is significantly higher than the one of the other modules of ProSimPlus®. To overcome this issue, an innovative method of drying model reduction has been developed. To facilitate the characterization work of a new product, a new and rapid method for identifying the apparent diffusivity of water by a reverse approach was also developed. A second part of this PhD focuses on the simulation and energy optimization of a sugar beet factory, in collaboration with V.E.R.I. All the unit operations of the factory were modeled with ProSimPlus® using only modules of -food non-specific- unit operations. Data reconciliation has been performed and deviation between simulated and industrial data were below 1 %. Energy optimization of the sugar factory was performed by combining thermal and exergy analyses. In this study, technical solutions were proposed to significantly reduce the total irreversibility, the cold utility requirement and the mass flow-rate of high pressure steam supplying the factory.