Design of algorithms for the automatic characterization of marine dune morphology and dynamics

par Julien Ogor

Thèse de doctorat en Electronique, microelectronique, optique et lasers, optoelectronique microondes robotique

Sous la direction de Benoît Zerr et de Nathalie Debèse.


  • Résumé

    Les dunes marines sont de grandes structures sédimentaires qui, ensemble, couvrent de larges zones appelées champs de dunes. Des dunes ont été découvertes dans tous les océans, de la côte jusqu'aux talus continentaux. Leur forme et mobilité sont des témoins du lien étroit qui existe entre le transport sédimentaire, l'hydrodynamique (courants marins) et la topographie du fond. L'étude des dunes est intéressante scientifiquement parlant, mais elle est également motivée par des enjeux économiques et environnementaux. Les dunes peuvent être étudiées de deux manières: La modélisation et l'analyse de données de terrain (granulométrie, courantométrie, données sismiques, données bathymétriques). Ces deux approches sont très différentes mais complémentaires. Avec l'amélioration des données Sondeur Multi-Faisceaux (SMF), il est maintenant possible de visualiser la morphologie des dunes et de suivre leur évolution de manière plus détaillée. Plusieurs méthodes automatiques d'analyse de la morphologie et de la dynamique des dunes ont été développées pour analyser les Modèles Numériques de Terrain (MNTs) construits à partir de ces données SMF. Pourtant, aucun ne permet d'estimer les valeurs de descripteurs morphologiques et dynamiques pour chaque dune. L'analyse et l'évaluation de ces descripteurs restent régionales avec le découpage des MNTs en régions rectangulaires. Seul un traitement manuel permet d'estimer ces descripteurs pour chaque dune. L'objectif de cette thèse est de développer des algorithmes automatiques permet- tant de quantifier la morphologie et la dynamique de chaque dune. Pour ce faire, une représentation des données SMF sous forme d'une tessellation triangulaire a été préférée au classique MNT régulier. Tout d'abord, les dunes doivent être extraites de la topographie du fond marin.


  • Résumé

    Marine dunes are large sedimentary mounds often organized in dunefields. They have been discovered in oceans all around the globe, from continental rises to nearshore areas. These mobile seafloor structures reflect the unique and complex relationship between the sediment, the seafloor topography and the hydrodynamics (currents). Dunes are not only interesting at a scientific level. In fact, their study is also motivated by economic, safety and environmental reasons. The study of dunes can be divided into two complementary approaches: Modelling and analysis of in situ data (granulometry, current, bathymetric data). The increased quality of MultiBeam EchoSounder (MBES) data allows scientists to monitor and visualize the complexity of, both, dune morphology and dynamics. Au- tomatic methods to characterize dune morphology and dynamics using Digital Terrain Models (DTMs) have already been proposed. But, none does it at the dune scale. Mor- phological and dynamical descriptors are estimated for patches of the dunefield. Today, the evaluation of such descriptors for each dune can only be achieved manually. The objective of this thesis is to design automatic algorithms for the quantification of dune morphology and dynamics. A representation of MBES data as triangular meshes has been preferred to the usual gridded DTMs. The first stage consists of delineating dunes in the seafloor. A scale adaptative, region growing algorithm based on geomorphometry is proposed. The combination of mesh implification and crest extraction algorithms enables to accurately recover dune crest lines. The mesh simplification facilitates the crest extraction by adapting the mesh resolution. Crest extraction is based on the discrete interpretation of the definition of crest lines in differential geometry. The crests are, then, used as seed regions by the dune extraction algorithm.