Etude des mécanismes physiques de fiabilité sur transistors Trigate/Nanowire

par Antoine Laurent

Thèse de doctorat en Nano electronique et nano technologies

Sous la direction de Gérard Ghibaudo.

Thèses en préparation à Grenoble Alpes , dans le cadre de École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble) , en partenariat avec Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'hyperfréquences et de caractérisation (laboratoire) .


  • Résumé

    En continuant à suivre la loi de Moore, les transistors ont atteint des dimensions de plus en plus réduites. Cependant pour les largeurs inférieures à 100nm, des effets parasites dits de canaux courts sont apparus. Il a ainsi fallu développer de nouvelles architectures, à savoir les transistors 3D, aussi appelés trigates, finfets ou encore nanofils. Le remplacement des transistors planaires utilisés depuis les années 60 par ces dispositifs tridimensionnels constitue une réelle rupture technologique et pose de sérieuses questions quant à la fiabilité de ces nouveaux composants électroniques. Parmi les spécificités des dispositifs 3D, on peut notamment citer l'utilisation de différents plans cristallins du silicium, les potentiels effets d'angle ou encore le confinement des porteurs de charge. Les principaux mécanismes de fiabilité doivent, à ce titre, être étudiés afin de prédire le vieillissement de tels dispositifs. Ainsi, l'évolution du transistor MOS et les limites de l'architecture planaire sont rappelées dans un premier temps. Les différents mécanismes de dégradation ainsi que les méthodes de caractérisation sont également exposés. Les défauts d'oxyde jouant un rôle important en fiabilité, l'impact sur la tension de seuil VT d'une charge élémentaire q selon sa localisation spatiale a été simulé. On a ainsi pu constater que l'influence de ces défauts change selon leur position mais aussi selon les dimensions du transistor lui-même. Par la suite, le manuscrit se concentre sur la dégradation BTI (Bias Temperature Instabilities). Une comparaison entre les transistors trigates et d'autres quasi planaires a ainsi été effectuée en mettant en évidence les effets de la largeur du MOSFET. Un autre mécanisme important de fiabilité est intitulé dégradation par porteurs chauds ou HC, hot carriers en anglais. Les principaux modèles développés sur les architectures planaires ont été rappelés puis vérifiés pour les transistors 3D. Lors de stress HC, les niveaux de courant sont tels que des effets d'auto-échauffement apparaissent et dégradent les paramètres électriques du dispositif. Cette contribution a alors dû être décorrélée de la contrainte porteurs chauds afin d'obtenir uniquement la dégradation HC. De manière similaire au BTI, les effets de la largeur du transistor ont également été analysés pour ce mécanisme de fiabilité. Enfin, l'effet des contraintes mécaniques dans le canal, telles que le strained-SOI ou l'apport de germanium, a été étudié non seulement du point de vue des performances mais également de la fiabilité. Nous avons alors pu en déduire le meilleur compromis performance/fiabilité réalisable.

  • Titre traduit

    Study of the physical mechanisms affecting the reliability of the trigate transistors


  • Résumé

    By continuing to follow Moore's law, transistors have reached ever smaller dimensions. However, from 100nm gate length, parasitic effects called short channel effects appear. As a result new architectures named trigate, nanowires or finfets have been developed. The transition from planar technology used for the last fifty years to 3D devices is a major technological breakthrough. The special features of these architectures like conduction over various crystalline planes, corner effects or carrier confinement effects raise numerous questions about their reliability. Main reliability mechanisms have to be study in order to evaluate 3D transistor aging. In this way, MOS transistor evolution and planar architecture limits have first been reminded. The electrical degradation mechanisms and their characterization methods have also been exposed. As oxide defects represent an important part of device reliability, impact on threshold voltage VT of an elementary charge q has been simulated in accordance to its spatial localization. Thus we can notice that the defect influence on VT change with at once its position and the device dimensions. Next, this manuscript focuses on Bias Temperature Instabilities (BTI). A parallel has been done between narrow Trigate devices and wide ones which can be considered as planar transistors and a width effect on NBTI (Negative BTI) degradation has been highlighted. Another major reliability mechanism is called hot carrier degradation. Its principle models developed on planar architecture have been remembered and their validity on Trigate transistors has been verified. During HC stress, current density can be so high that self-heating effects appear and degrade device electrical parameters. Therefore this contribution has been decorrelate from HC degradation in order to obtain the result of HC stress only. As in BTI chapter, width effect has also been evaluated for this reliability mechanism. Finally strain effects in channel region have been analyzed from both performance and reliability point of view. As a conclusion the best tradeoff between these two items has been determined.