Aide à la décision médicale et télémédecine dans le suivi de l’insuffisance cardiaque

par Kevin Duarte

Thèse de doctorat en Mathématiques

Sous la direction de Jean-Marie Monnez et de Eliane Albuisson.

Soutenue le 10-12-2018

à l'Université de Lorraine , dans le cadre de École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine , en partenariat avec Institut Élie Cartan de Lorraine (2013-.... ; Vandoeuvre-lès-Nancy, Metz) (laboratoire) et de Centre d’Investigation Clinique Plurithématique (CIC P) (Partenaire de recherche) .

Le président du jury était Radu Stefan Stoica.

Le jury était composé de Jérôme Saracco, Christophe Biernacki, Marie Chavent.

Les rapporteurs étaient Jérôme Saracco, Christophe Biernacki.


  • Résumé

    Cette thèse s’inscrit dans le cadre du projet "Prendre votre cœur en mains" visant à développer un dispositif médical d’aide à la prescription médicamenteuse pour les insuffisants cardiaques. Dans une première partie, une étude a été menée afin de mettre en évidence la valeur pronostique d’une estimation du volume plasmatique ou de ses variations pour la prédiction des événements cardiovasculaires majeurs à court terme. Deux règles de classification ont été utilisées, la régression logistique et l’analyse discriminante linéaire, chacune précédée d’une phase de sélection pas à pas des variables. Trois indices permettant de mesurer l’amélioration de la capacité de discrimination par ajout du biomarqueur d’intérêt ont été utilisés. Dans une seconde partie, afin d’identifier les patients à risque de décéder ou d’être hospitalisé pour progression de l’insuffisance cardiaque à court terme, un score d’événement a été construit par une méthode d’ensemble, en utilisant deux règles de classification, la régression logistique et l’analyse discriminante linéaire de données mixtes, des échantillons bootstrap et en sélectionnant aléatoirement les prédicteurs. Nous définissons une mesure du risque d’événement par un odds-ratio et une mesure de l’importance des variables et des groupes de variables. Nous montrons une propriété de l’analyse discriminante linéaire de données mixtes. Cette méthode peut être mise en œuvre dans le cadre de l’apprentissage en ligne, en utilisant des algorithmes de gradient stochastique pour mettre à jour en ligne les prédicteurs. Nous traitons le problème de la régression linéaire multidimensionnelle séquentielle, en particulier dans le cas d’un flux de données, en utilisant un processus d’approximation stochastique. Pour éviter le phénomène d’explosion numérique et réduire le temps de calcul pour prendre en compte un maximum de données entrantes, nous proposons d’utiliser un processus avec des données standardisées en ligne au lieu des données brutes et d’utiliser plusieurs observations à chaque étape ou toutes les observations jusqu’à l’étape courante sans avoir à les stocker. Nous définissons trois processus et en étudions la convergence presque sûre, un avec un pas variable, un processus moyennisé avec un pas constant, un processus avec un pas constant ou variable et l’utilisation de toutes les observations jusqu’à l’étape courante. Ces processus sont comparés à des processus classiques sur 11 jeux de données. Le troisième processus à pas constant est celui qui donne généralement les meilleurs résultats

  • Titre traduit

    Medical decision support and telemedecine in the monitoring of heart failure


  • Résumé

    This thesis is part of the "Handle your heart" project aimed at developing a drug prescription assistance device for heart failure patients. In a first part, a study was conducted to highlight the prognostic value of an estimation of plasma volume or its variations for predicting major short-term cardiovascular events. Two classification rules were used, logistic regression and linear discriminant analysis, each preceded by a stepwise variable selection. Three indices to measure the improvement in discrimination ability by adding the biomarker of interest were used. In a second part, in order to identify patients at short-term risk of dying or being hospitalized for progression of heart failure, a short-term event risk score was constructed by an ensemble method, two classification rules, logistic regression and linear discriminant analysis of mixed data, bootstrap samples, and by randomly selecting predictors. We define an event risk measure by an odds-ratio and a measure of the importance of variables and groups of variables using standardized coefficients. We show a property of linear discriminant analysis of mixed data. This methodology for constructing a risk score can be implemented as part of online learning, using stochastic gradient algorithms to update online the predictors. We address the problem of sequential multidimensional linear regression, particularly in the case of a data stream, using a stochastic approximation process. To avoid the phenomenon of numerical explosion which can be encountered and to reduce the computing time in order to take into account a maximum of arriving data, we propose to use a process with online standardized data instead of raw data and to use of several observations per step or all observations until the current step. We define three processes and study their almost sure convergence, one with a variable step-size, an averaged process with a constant step-size, a process with a constant or variable step-size and the use of all observations until the current step without storing them. These processes are compared to classical processes on 11 datasets. The third defined process with constant step-size typically yields the best results


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.