Détection de changement par fusion d'images de télédétection de résolutions et modalités différentes

par Vinicius Ferraris

Thèse de doctorat en Signal, Image, Acoustique et Optimisation

Sous la direction de Marie Chabert et de Nicolas Dobigeon.


  • Résumé

    La détection de changements dans une scène est l’un des problèmes les plus complexes en télédétection. Il s’agit de détecter des modifications survenues dans une zone géographique donnée par comparaison d’images de cette zone acquises à différents instants. La comparaison est facilitée lorsque les images sont issues du même type de capteur c’est-à-dire correspondent à la même modalité (le plus souvent optique multi-bandes) et possèdent des résolutions spatiales et spectrales identiques. Les techniques de détection de changements non supervisées sont, pour la plupart, conçues spécifiquement pour ce scénario. Il est, dans ce cas, possible de comparer directement les images en calculant la différence de pixels homologues, c’est-à-dire correspondant au même emplacement au sol. Cependant, dans certains cas spécifiques tels que les situations d’urgence, les missions ponctuelles, la défense et la sécurité, il peut s’avérer nécessaire d’exploiter des images de modalités et de résolutions différentes. Cette hétérogénéité dans les images traitées introduit des problèmes supplémentaires pour la mise en œuvre de la détection de changements. Ces problèmes ne sont pas traités par la plupart des méthodes de l’état de l’art. Lorsque la modalité est identique mais les résolutions différentes, il est possible de se ramener au scénario favorable en appliquant des prétraitements tels que des opérations de rééchantillonnage destinées à atteindre les mêmes résolutions spatiales et spectrales. Néanmoins, ces prétraitements peuvent conduire à une perte d’informations pertinentes pour la détection de changements. En particulier, ils sont appliqués indépendamment sur les deux images et donc ne tiennent pas compte des relations fortes existant entre les deux images. L’objectif de cette thèse est de développer des méthodes de détection de changements qui exploitent au mieux l’information contenue dans une paire d’images observées, sans condition sur leur modalité et leurs résolutions spatiale et spectrale. Les restrictions classiquement imposées dans l’état de l’art sont levées grâce à une approche utilisant la fusion des deux images observées. La première stratégie proposée s’applique au cas d’images de modalités identiques mais de résolutions différentes. Elle se décompose en trois étapes. La première étape consiste à fusionner les deux images observées ce qui conduit à une image de la scène à haute résolution portant l’information des changements éventuels. La deuxième étape réalise la prédiction de deux images non observées possédant des résolutions identiques à celles des images observées par dégradation spatiale et spectrale de l’image fusionnée. Enfin, la troisième étape consiste en une détection de changements classique entre images observées et prédites de mêmes résolutions. Une deuxième stratégie modélise les images observées comme des versions dégradées de deux images non observées caractérisées par des résolutions spectrales et spatiales identiques et élevées. Elle met en œuvre une étape de fusion robuste qui exploite un a priori de parcimonie des changements observés. Enfin, le principe de la fusion est étendu à des images de modalités différentes. Dans ce cas où les pixels ne sont pas directement comparables, car correspondant à des grandeurs physiques différentes, la comparaison est réalisée dans un domaine transformé. Les deux images sont représentées par des combinaisons linéaires parcimonieuses des éléments de deux dictionnaires couplés, appris à partir des données. La détection de changements est réalisée à partir de l’estimation d’un code couplé sous condition de parcimonie spatiale de la différence des codes estimés pour chaque image. L’expérimentation de ces différentes méthodes, conduite sur des changements simulés de manière réaliste ou sur des changements réels, démontre les avantages des méthodes développées et plus généralement de l’apport de la fusion pour la détection de changements

  • Titre traduit

    Fusion-based change detection for ng images of differemote sensirent resolutions and modalities


  • Résumé

    Change detection is one of the most challenging issues when analyzing remotely sensed images. It consists in detecting alterations occurred in a given scene from between images acquired at different times. Archetypal scenarios for change detection generally compare two images acquired through the same kind of sensor that means with the same modality and the same spatial/spectral resolutions. In general, unsupervised change detection techniques are constrained to two multiband optical images with the same spatial and spectral resolution. This scenario is suitable for a straight comparison of homologous pixels such as pixel-wise differencing. However, in somespecific cases such as emergency situations, punctual missions, defense and security, the only available images may be of different modalities and of different resolutions. These dissimilarities introduce additional issues in the context of operational change detection that are not addressedby most classical methods. In the case of same modality but different resolutions, state-of-the artmethods come down to conventional change detection methods after preprocessing steps appliedindependently on the two images, e.g. resampling operations intended to reach the same spatialand spectral resolutions. Nevertheless, these preprocessing steps may waste relevant informationsince they do not take into account the strong interplay existing between the two images. The purpose of this thesis is to study how to more effectively use the available information to work with any pair of observed images, in terms of modality and resolution, developing practicalcontributions in a change detection context. The main hypothesis for developing change detectionmethods, overcoming the weakness of classical methods, is through the fusion of observed images. In this work we demonstrated that if one knows how to properly fuse two images, it is also known how to detect changes between them. This strategy is initially addressed through a change detection framework based on a 3-step procedure: fusion, prediction and detection. Then, the change detection task, benefiting from a joint forward model of two observed images as degradedversions of two (unobserved) latent images characterized by the same high spatial and highspectral resolutions, is envisioned through a robust fusion task which enforces the differencesbetween the estimated latent images to be spatially sparse. Finally, the fusion problem isextrapolated to multimodal images. As the fusion product may not be a real quantity, the process is carried out by modelling both images as sparse linear combinations of an overcomplete pair of estimated coupled dictionaries. Thus, the change detection task is envisioned through a dual code estimation which enforces spatial sparsity in the difference between the estimated codes corresponding to each image. Experiments conducted in simulated realistically and real changes illustrate the advantages of the developed method, both qualitatively and quantitatively, proving that the fusion hypothesis is indeed a real and effective way to deal with change detection


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national polytechnique. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.