Transport optimal semi-discret et applications en optique anidolique

par Jocelyn Meyron

Thèse de doctorat en Signal image parole telecoms

Sous la direction de Dominique Attali, Boris Thibert et de Quentin Mérigot.

Le président du jury était Edouard Oudet.

Le jury était composé de Julie Digne, André Lieutier.

Les rapporteurs étaient Bruno Lévy, Marco Cuturi.


  • Résumé

    Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie(ou réfractée) par ce composant corresponde à une distribution fixée en avance. Comme applications, nous pouvons citer la conception de phares de voitures ou de caustiques. Nous montrons que ces problèmes de conception de composants optiques peuvent être vus comme des problèmes de transport optimal et nous expliquons en quoi cette formulation permet d’étudier l’existence et la régularité des solutions. Nous montrons aussi comment, en utilisant des outils de géométrie algorithmique, nous pouvons utiliser une méthode numérique efficace, la méthode de Newton amortie, pour résoudre tous ces problèmes. Nous obtenons un algorithme générique capable de construire efficacement un composant optique qui réfléchit (ou réfracte)une distribution de lumière prescrite. Nous montrons aussi la convergence de l’algorithme de Newton pour résoudre le problème de transport optimal dans le cas où le support de la mesure source est une union finie de simplexes. Nous décrivons également la relation commune qui existe entre huit différents problèmes de conception de composants optiques et montrons qu’ils peuvent tous être vus comme des équations de Monge-Ampère discrètes. Nous appliquons aussi la méthode de Newton à de nombreux problèmes de conception de composants optiques sur différents exemples simulés ainsi que sur des prototypes physiques. Enfin, nous nous intéressons à un problème apparaissant en transport optimal numérique à savoir le choix du point initial. Nous développons trois méthodes simples pour trouver de “bons” points initiaux qui peuvent être ensuite utilisés comme point de départ dans des algorithmes de résolution de transport optimal.

  • Titre traduit

    Semi-discrete optimal transport and applications in non-imaging optics


  • Résumé

    In this thesis, we are interested in solving many inverse problems arising inoptics. More precisely, we are interested in designing optical components such as mirrors andlenses that satisfy some light conservation constraints meaning that we want to control thereflected (or refracted) light in order match a prescribed intensity. This has applications incar headlight design or caustic design for example. We show that optical component designproblems can be recast as optimal transport ones for different cost functions and we explainhow this allows to study the existence and the regularity of the solutions of such problems. Wealso show how, using computational geometry, we can use an efficient numerical method namelythe damped Newton’s algorithm to solve all these problems. We will end up with a singlegeneric algorithm able to efficiently build an optical component with a prescribed reflected(or refracted) illumination. We show the convergence of the Newton’s algorithm to solve theoptimal transport problem when the source measure is supported on a finite union of simplices.We then describe the common relation between eight optical component design problemsand show that they can all be seen as discrete Monge-Ampère equations. We also apply theNewton’s method to optical component design and show numerous simulated and fabricatedexamples. Finally, we look at a problem arising in computational optimal transport namelythe choice of the initial weights. We develop three simple procedures to find “good” initialweights which can be used as a starting point in computational optimal transport algorithms.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.